
4.4 Stochastically driven MOC variability
A review of classes of THC oscillations: small amplitude/ large amplitude; linear and stochas-
tically forced/ nonlinear self-sustained; loop oscillations due to advection around the THC path,
or periodic switches between convective and non convective states; relaxation oscillations; noise
induced switches between steady state, stochastic resonance;

Details of noise-driven THC/MOC variability:

1. Linear Loop-oscillations due to advection around the circulation path:

(a) Linearized stability analysis (write equations, explain linearization, writing of linearized
equations in matrix form) and bifurcations (section 6.2.4 in Dijkstra (2000) or Figs 3,
4 from Tziperman et al. (1994)); Stability regimes in a 4-box model: stable, stable
oscillatory, [Hopf bifurcation], unstable oscillatory, unstable; Note changes from 2-
box Stommel model: oscillatory behavior and change to the point of instability on the
bifurcation diagram; Stochastic forcing can excite this damped oscillatory variability.

(b) The GCM study of Delworth et al. (1993) (DMS), Figs. 4, 5, 6, 8; this paper also
demonstrates the link between the variability of meridional density gradients and of the
THC; Note the proposed role of changes to the gyre circulation in this paper, mention
related mechanisms based on ocean mid-latitude Rossby wave propagation;

(c) A box model fit to the DMS GCM, showing that the horizontal gyre variability may not
be critical and that the variability is due to the excitation of a damped oscillatory mode
(Fig. 6, Griffies and Tziperman, 1995);

(d) Useful and interesting analysis methods in DMS: composites (Figs. 6,7), and regres-
sion analysis between scalar indices (Figs. 8,9) and between scalar indices and fields
(Figs. 10, 11, 12).

2. A complementary view of the above stochastic excitation of damped THC oscillatory mode:
first, Hasselmann’s model driven by white noise and leading to a red spectrum response

11



(to derive the spectrum of the response, Fourier transform the first equation, and multiply
transformed equation and its complex conjugate).

ẋ+ gx = x(t)
P(w) = |x̂|2 = x2

0/(w2 + g2).

Compare this to a damped oscillatory mode excited by noise that results in a spectral peak,
using the following derivation of the spectral response,

ẍ+ gẋ+W2x = x(t)
�w2x̂� igwx̂+W2x̂ = x0

x̂ = x0/(W2 �w2 � igw) = x0(W2 �w2 + igw)/((W2 �w2)2 + g2w2)

x̂⇤ = x0(W2 �w2 � igw)/((W2 �w2)2 + g2w2)

P(w) = |x̂|2 = x̂x̂⇤ =
x2

0
(W2 �w2)2 + g2w2 .

3. Stochastic variability due to noise induced transitions between steady states. First, the
GCM study showing jumping between three very different MOC equilibria under sufficiently
strong stochastic forcing: Figs. 2, 4 from Weaver and Hughes (1994). Then Fig. 5 from Cessi
(1994) showing a careful analysis of the same type of variability in the Stommel box model.

4. (Time permitting:) details of Cessi analysis: Stommel 2 box model from section 2 with
model derivation and in particular getting to eqn 2.9 with temperature fixed and salinity
difference satisfying an equation of a particle on a double potential surface; section 3 with
deterministic perturbation;

5. Stochastic resonance: periodic FW forcing plus noise. Matlab code
Stommel stochastic resonance.m, and jpeg figures with results:
Stochastic Resonance a,b,c.jpg;

6. (Time permitting:) THC oscillations due to “Thermal” Rossby waves analyzed by Te Raa
and Dijkstra (2002), using equations 8-10 and Figure 7 of Zanna et al. (2011).

7. Stochastic forcing, non normal THC dynamics, transient amplification; first the basic deriva-
tion: Stochastic optimals: the derivation from Tziperman and Ioannou (2002): consider a
stochastically forced linear system:

Ṗ = AP+ f(t)

solution is

P(t) = eAtP(0)+
Z t

0
dseA(t�s)f(s) = B(t,0)P(0)+

Z t

0
dsB(t,s)f(s)

12



where the first term is a response to the initial conditions which decays in time and can
therefore ignored, and the second is the response to the stochastic forcing. Assuming for
simplicity a zero-mean state variable P(t), the variance is given by the following expression
(summation convention assumed),

var(kPk) = hPi(t)Pi(t)i

=

⌧Z t

0
ds

Z t

0
dtBil(t,s) fl(s)Bin(t, t) fn(t)

�

=
Z t

0
ds

Z t

0
dtBil(t,s)Bin(t, t)h fl(s) fn(t)i

Specifying the noise statistics as separable in space and time, letting the ith component of
the noise be, say, fin(t), and with Cln = fl fn being the noise spatial correlation matrix and
D(t � s) = hn(t)n(s)i the temporal correlation function (delta function for white noise),

h fl(s) fn(t)i=ClnD(t � s)

we have

var(kPk) =
Z t

0
ds

Z t

0
dtBil(t,s)Bin(t, t)ClnD(t � s)

= Tr
✓Z t

0
ds

Z t

0
dt[BT (t,s)B(t, t)D(t � s)]C

◆

⌘ Tr(ZC)

This implies that the most efficient way to excite the variance is to make the noise spatial
structure be the first eigenvector of Z. To show this, show that eigenvectors of Z maximize
J = Tr(CZ) = Zi jCji; given the above expression for Ci j = fi f j and we need to maximize
Zi j fi f j +l(1� fk fk); differentiating with respect to fn we get that f = { fn} is an eigenvector
of the matrix Z. The vector that maximizes the variance is, as usual, the one corresponding
to the largest eigenvalue of Z.
Then more specifically to THC/MOC: The 3-box model of Tziperman and Ioannou (2002),
or the spatially resolved 2d model of Zanna and Tziperman (2005)). Figures for the amplifi-
cation and mechanism, taken from a talk on this subject (file nonormal THC.pdf).

8. (Time permitting:) Use of eigenvectors for finding the instability mechanism: linearize, 
solve eigenvalue problem, substitute spatial structure of eigenvalue into equations and see 
which equations provide the positive/ negative feedbacks; results for THC problem (e.g.,
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Tziperman et al., 1994, section 3): destabilizing role of v0—S̄ and stabilizing role of v̄—S0;
difference in stability mechanism in upper ocean (v0—S̄) vs that of the deep ocean (where
—S̄ = 0 and v̄—S0 is dominant); for temperature, also (v0—T̄ is more important, but from
the eigenvectors one can see that v0 is dominated by salinity effects; GCM verification and
the distance of present-day THC from stability threshold: Figs 4,5,6 from Tziperman et al.
(1994); Fig 3 from Toggweiler et al. (1996); Figs 1, 2, 3 from Tziperman (1997).
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