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Motivation. Motivation for ENSO teleconnection: worldwide weather effects. Further
motivation: results of barotropic model runs, say Fig. 3 from Hoskins and Karoly (1981),
showing global propagation of waves due to tropical disturbances.

Barotropic Rossby waves in a zonally-symmetric mean zonal flow. Start with a
derivation of PV conservation as an equation for a Rossby wave in presence of a mean zonal
flow. In Cartesian coordinates, start from the barotropic QG potential vorticity conservation,
(∂t + u∂x + v∂y)(vx − uy + βy) = 0; let u = U(y) + u′, v = v′, and linearize, to find the
linearized quasi-geostrophic vorticity equation (QG PV), (∂t+U∂x)(v

′
x−u′y)+(β−Uyy)v

′ = 0.
Introducing a stream function v′ = ψx, u

′ = −ψy and effective beta βeff = β − Uyy to find
the final wave equation,

Lψ = (∂t + U∂x)∇2ψ + βeffψx = 0.

These waves travel large distances so it is important to keep track of spherical coordinates
Hoskins and Karoly (1981) therefore use the same equation, but in spherical coordinates
using the Mercator projection, their equations 5.1–5.16. This leads to the same QG PV
equation, except replacing βeff with their βM and of the mean zonal wind U with their uM ,
both defined as,

βM =
2Ω

a
− d

dy

1

cos2 ϕ

d

dy
(cos2 ϕ uM)

uM = U/ cosϕ.

Here Ω is the Earth rotation rate and ϕ is latitude, corresponding to the y coordinate.
We now substitute a wave solution for the stream function, ψ = ei(kx+ly−ωt) into the above
linearized potential vorticity equation. The resulting Rossby wave dispersion relation is,

ω = uM(y)k − βM(y)k

k2 + l2
= Ω̄(k, l, y).

The final functional form on the RHS emphasizes that the frequency is a function of the
wavenumbers and of latitude. The consequences of this will become clear shortly.
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Ray tracing reminder. Consider a wave function ψ(x, y, t) = eiϕ(x,y,t) satisfying the wave
equation Lψ = 0. E.g., the above QG PV equation, or Lψ = ψtt− c2(x, t)ψxx = 0 (note that
the wave velocity c(x, t) is assumed in this example to be a function of space and time, and
therefore so would the dispersion relation below. Taylor expand the phase ϕ ≈ (∇ϕ)x+(ϕt)t,
and define k ≡ ∇ϕ, ω ≡ −ϕt. Because the order of spatial and temporal derivatives may be
exchanged, we immediately have ∂t∇ϕ = ∇∂tϕ, which implies,

∂k

∂t
+∇ω = 0. (1)

The wave equation gives the dispersion relation L(ω,k,x, t) = 0 which we can write as

ω = Ω̄(k, l, x, y, t). (2)

For the above example, this takes the form ω2 = Ω̄2(k, x, t) = c2(x, t)k2. Now, taking the
spatial gradient of the frequency, we have

∇ω =
∂Ω̄

∂k
· ∇k+∇Ω̄,

substituting into (1),

∂k

∂t
+ cg · ∇k = −∇Ω̄. (3)

Differentiating (2) wrt t, and using (1),

∂ω

∂t
+ cg · ∇ω = Ω̄t. (4)

The above two equations (3, 4) provide the rate of change of the wavenumber and frequency
following a path set by the group velocity. The ray path follows the group velocity, and is
therefore given by,

dx

dt
= cg. (5)

These final three equations are the wave tracing equations, allowing us to track a wave
package traveling with the wave group velocity, as well as its wavenumber and frequency
which change depending on changes to the medium in which the wave propagates.

Consequences for zonally-symmetric, steady, mean zonal flow. Because the mean
flow uM and therefore the dispersion relation are x and t-independent, we have k =constant
and ω =constant along a ray, while dgl/dt ≡ (∂t + cg · ∇)l = −Ω̄y and dx/dt = cg.
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Steady-state view of limits on propagation. One can obtain an intuitive understand-
ing of the fate of Rossby rays directly from the dispersion relation, and ignoring, for now, the
time-dependent equations for the meridional wavenumber (Hoskins and Karoly, 1981, after
solution 5.23). ENSO events last months, which implies an effectively stationary forcing on
the atmosphere, and therefore we expect the wave response to be stationary as well. Start
therefore from the dispersion relation for stationary waves, 0 = ω = uMk − βMk/(k

2 + l2),
and define Ks = (βM/uM)1/2 = k2 + l2. Based on these only, we can analyze the trapping of
the ray by the jet: if k > Ks then l must be imaginary. Therefore, as the wave propagates
northward from the low latitude, with a constant k while Ks gets smaller due to changes in
mean flow and effective beta (Fig. 13a,b), this implies evanescent behavior in latitude past
a critical latitude, and trapping of the ray at the critical latitude.

Allowing for dl/dt. We next consider why the ray is reflected rather than being trapped
at the critical latitude as deduced from the above heuristic steady-state argument. In short,
this is due to the prognostic dl/dt equation allowing dl/dt < 0 when l = 0, leading to the
ray turning back south (thanks to Jeff Shaman).

The stationary argument based on Ks suggests that the ray has l = 0 where Ks = k,
which only means that northward propagation is halted, not that it turns around. To see
how this works: Consider for simplicity solid body rotation, note Ks =

√
βM/uM , where

uM = U/ cos(ϕ), that is in the Mercator projection uM is a constant, and βM = 2Ω cos2(ϕ)/a.
So, Ks is a decreasing function of latitude (5.25, HK81). See Ray-Tracing-Rossby-Waves-
Jeff-solid-test.jpg for an example of ray tracing with solid body rotation, k = 5.

The equations are:

Ks =
√
k2 + l2

dk

dt
= −kduM

dx
− l

dvM
dx

+

(
d2Q

dxdy
k − d2Q

dx2
l

)
/K2

s

dl

dt
= −kduM

dy
− l

dvM
dy

+

(
d2Q

dy2
k − d2Q

dxdy
l

)
/K2

s

dx

dt
= ug = uM +

(
(k2 − l2)

dQ

dy
− 2kl

dQ

dx

)
/K4

s

dy

dt
= vg = vM +

(
2kl

dQ

dy
− (k2 − l2)

dQ

dx

)
/K4

s

dQ/dy = βM ; for the assumed solid body rotation atmosphere, uM=constant and vM=0;
Therefore all the derivative terms are zero, but the dQ/dy and d2Q/dy2 (due to β);
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So,

dk

dt
= 0

dl

dt
=
d2Q

dy2
k/K2

s

dx

dt
= uM + (k2 − l2)

dQ

dy
/K4

s

dy

dt
= 2kl

dQ

dy
/K4

s

The key is the second equation. In the northern hemisphere, the initial meridional wavenum-
ber keeps dropping, dl/dt < 0, even when l = 0. Thus even if l reaches zero, dy/dt = 0 by
the 4th equation, the ray should not be stuck at that latitude, as the third equation dictates
that l decreases. So at the next time step, dy/dt < 0. The opposite occurs for the southern
hemisphere where dl/dt > 0, which eventually sends the ray back northward.

WKB analysis of the wave amplitude during reflection. (Time permitting:) To get
some idea of the amplitude of the propagating waves, assume the meridional wavenumber
varies slowly in latitude, l = l(ϵy), corresponding to a medium that varies slowly, on a scale
longer than the wavelength. Use the WKB solution (Bender and Orszag (1978) section
10.1): start with equation 5.18. Substituting into 5.9 this leads to d2P/dy2 + l2(ϵy)P = 0
for l2(ϵy) defined in 5.20; to transform to standard WKB form, define Y = ϵy so that
ϵ2d2P/dY 2+ l2(Y )P = 0; try a WKB solution corresponding to a wave-like exponential with
a rapidly varying phase plus a slower correction P = exp(S0(Y )/δ + S1(Y )) to find

ϵ2[(S ′
0/δ + S ′

1)
2 + (S ′′

0/δ + S ′′
1 )]P + l2P = 0;

let δ = ϵ and then O(1) equation is S ′
0
2 + l2(Y ) = 0 so that S0 = i

∫
l(Y ) dY (if l2 is nearly

constant, this simply reduces to the usual wave solution eily). Next, consider O(ϵ) equation
which, after using the O(1) equation, is 2S ′

0S
′
1+S

′′
0 = 0 and the solution is S ′

1 = −S ′′
0/(2S

′
0) =

−(dl/dY )/(2l) = −d/dY (lnl1/2) so that S1 = lnl−1/2 which means that the wave amplitude
is l−1/2. This gives the solution in Hoskins and Karoly (1981) equation (5.21, 5.23), see
further discussion there.

Constant angular momentum flow. We can calculate analytically Rossby rays for a
constant angular momentum flow, uM ≡ U/ cosϕ = ω̄a for some constant ω̄, and with
βM = (2 cos2 ϕ)(Ω + ω̄)/a (section 5c, page 1192, Fig. 12) and then the one using realistic
zonal flows (Figs. 13, 14, 15, etc);

Nonlinear effects and baroclinic waves. Finally, later works showed that stationary
linear barotropic Rossby waves excite nonlinear eddy effects which may eventually dominate
the teleconnection effects.
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For baroclinic atmospheric waves,

0 = ω = Ω̄(k, l, y) = uMk −
βMk

k2 + l2 + L−2
R

,

so thatK2
s = (βM/uM)−L−2

R = k2+l2. The smallerKs implies that such baroclinic waves are
more easily trapped (that is, trapped for a smaller value of k than barotropic waves). They
are typically trapped near the equator within a scale of the Rossby radius of deformation
LR which is some 1000 km or so (see discussion on page 1195 left column).
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