Writing a PDE in matrix form (for optimal initial conditions, transient growth, and stochastic optimals, also demonstrating grid choice depending on type of boundary conditions)

Eli Tziperman, EPS231/ APM202

April 14, 2015

Consider for example,

$$
\begin{equation*}
T_{t}+u T_{x}=\kappa T_{x x}, \tag{1}
\end{equation*}
$$

with constant velocity u and diffusivity κ, and b.c. of prescribed flux on one side and prescribed temperature on the other,

$$
\left.\left(u T-\kappa T_{x}\right)\right|_{x=0}=0,\left.\quad T\right|_{x=1}=A .
$$

Given the two different boundary conditions at the two ends (prescribed flux at $x=0$ vs fixed value at $x=1$), it is convenient to let $x=0$ be at a half grid location (that is, between two grid points), and $x=1$ at a grid point location,

Define $T_{i+\frac{1}{2}}=\left(T_{i}+T_{i+1}\right) / 2, d T /\left.d x\right|_{i+1 / 2}=\left(T_{i+1}-T_{i}\right) / \Delta x$, and write the b.c. as,

$$
\begin{aligned}
& u T_{i=\frac{1}{2}}-\left.\kappa \frac{d T}{d x}\right|_{i=\frac{1}{2}}=0 \\
& T_{i=N}=A .
\end{aligned}
$$

The equation in finite difference is then,

$$
\begin{aligned}
\frac{d}{d t} T_{1} & =-\left(u T_{1 \frac{1}{2}}-0\right) / \Delta x+\kappa\left(\left.\frac{d T}{d x}\right|_{1 \frac{1}{2}}-0\right) / \Delta x \\
\frac{d}{d t} T_{i} & =-\left(u T_{i+\frac{1}{2}}-u T_{i-\frac{1}{2}}\right) / \Delta x+\kappa\left(\left.\frac{d T}{d x}\right|_{i+\frac{1}{2}}-\left.\frac{d T}{d x}\right|_{i-\frac{1}{2}}\right) / \Delta x \\
\frac{d}{d t} T_{N-1} & =-\left(u T_{N-\frac{1}{2}}-u T_{N-1 \frac{1}{2}}\right) / \Delta x+\kappa\left(\left.\frac{d T}{d x}\right|_{N-\frac{1}{2}}-\left.\frac{d T}{d x}\right|_{N-1 \frac{1}{2}}\right) / \Delta x
\end{aligned}
$$

These translate into

$$
\begin{aligned}
\frac{d}{d t} T_{1} & =-u\left(T_{1}+T_{2}\right) /(2 \Delta x)+\kappa\left(T_{2}-T_{1}\right) /(\Delta x)^{2} \\
\frac{d}{d t} T_{i} & =-u\left(T_{i+1}-T_{i-1}\right) /(2 \Delta x)+\kappa\left(T_{i+1}-2 T_{i}+T_{i-1}\right) /(\Delta x)^{2} \\
\frac{d}{d t} T_{N-1} & =-u\left(A-T_{N-2}\right) /(2 \Delta x)+\kappa\left(A-2 T_{N-1}+T_{N-2}\right) /(\Delta x)^{2}
\end{aligned}
$$

which may be written as a set of equations for T_{1}, \ldots, T_{N-1},

$$
\begin{aligned}
\frac{d}{d t} T_{1} & =T_{1}\left(-\frac{u}{2 \Delta x}-\frac{\kappa}{\Delta x^{2}}\right)+T_{2}\left(-\frac{u}{2 \Delta x}+\frac{\kappa}{\Delta x^{2}}\right) \\
& =T_{1} a_{11}+T_{2} a_{12} \\
\frac{d}{d t} T_{i} & =T_{i-1}\left(\frac{u}{2 \Delta x}+\frac{\kappa}{\Delta x^{2}}\right)+T_{i}\left(-2 \frac{\kappa}{\Delta x^{2}}\right)+T_{i+1}\left(-\frac{u}{2 \Delta x}+\frac{\kappa}{\Delta x^{2}}\right) \\
& =T_{i-1} a_{i, i-1}+T_{i} a_{i i}+T_{i+1} a_{i, i+1} \\
\frac{d}{d t} T_{N-1} & =T_{N-2}\left(\frac{u}{2 \Delta x}+\frac{\kappa}{\Delta x^{2}}\right)+T_{N-1}\left(-2 \frac{\kappa}{\Delta x^{2}}\right)+A\left(-\frac{u}{2 \Delta x}+\frac{\kappa}{\Delta x^{2}}\right) \\
& =T_{N-2} a_{N-1, N-2}+T_{N-1} a_{N-1, N-1}+b_{N-1},
\end{aligned}
$$

or,
$\frac{d}{d t}\left(\begin{array}{c}T_{1} \\ \vdots \\ T_{i} \\ \vdots \\ T_{N-1}\end{array}\right)=\left(\begin{array}{ccccccc}a_{11} & a_{12} & \ldots & & & & 0 \\ & & & & & & \\ 0 & \ldots & a_{i, i-1} & a_{i, i} & a_{i, i+1} & \ldots & 0 \\ & & & & & & \\ 0 & \ldots & & & & a_{N-1, N-2} & a_{N-1, N-1}\end{array}\right)\left(\begin{array}{c}T_{1} \\ \vdots \\ T_{i} \\ \vdots \\ T_{N-1}\end{array}\right)+\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \vdots \\ b_{N-1}\end{array}\right)$.

