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ABSTRACT

The optimal perturbations (singular vectors) of a dynamical coupled model, a hybrid coupled model, and a
linear inverse model of ENSO are compared. The hybrid coupled model consists of a dynamical ocean model
and a statistical atmospheric model. The dynamical ocean model is identical to that used in the dynamical coupled
model, and the atmospheric model is a statistical model derived from long time series of the dynamical coupled
model. The linear inverse model was also derived from long time series from the dynamical coupled model.
Thus all three coupled models are very closely related and all produce similar ENSO oscillations. The dynamical
model and hybrid model also possess similar levels of hindcast skill. However, the optimal perturbations of the
tangent linear versions of each model are not the same. The hybrid and linear inverse models are unable to
recover the SST structure of the optimal perturbations of the dynamical model. The SST structure of the dynamical
coupled model is a result of nonnormality introduced by latent heating of the atmosphere by deep convection
over the west Pacific warm pool. It is demonstrated that standard statistical techniques remove the effects of
the latent heating on the nonnormality of the hybrid and linear inverse models essentially rendering them more
normal than their dynamical model counterpart. When the statistical components of the hybrid coupled model
and the linear inverse models were recomputed using SST anomalies that are appropriately scaled by the standard
deviation of SST variability, nonnormality was reintroduced into these models and they recovered the optimal
perturbation structure of the dynamical model. Even though the hybrid and linear inverse model with scaled
SSTs can recover the large-scale features of the correct optimal structure, state space truncation means that the
dynamics of the resulting optimal perturbations is not the same as that governing optimal perturbation growth
in the dynamical model. The consequences of these results for observed estimates of optimal perturbations for
ENSO are discussed.

1. Introduction

During the last decade the interest in seasonal pre-
diction of the coupled ocean–atmosphere system in the
Tropics has increased considerably and there are now
many groups that regularly issue forecasts of El Niño–
Southern Oscillation (ENSO) (e.g., Barnston et al. 1994;
COLA Experimental Long Lead Forecast Bulletin). Nat-
urally the increasing interest in prediction has led to an
increasing interest in the predictability of ENSO and
numerous studies have addressed this issue in various
ways (e.g., Goswami and Shukla 1991; Blumenthal
1991; Davey et al. 1994; Webster 1995; Latif et al. 1994;
Chen et al. 1997; Kleeman and Moore 1997, 1999;
Moore and Kleeman 1998). More recently the ENSO
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community have followed the lead of numerical weather
prediction in an attempt to identify the most rapidly
growing disturbances in the coupled system using the
ideas embodied in the generalized stability framework
of Farrell and Ioannou (1996a,b). These perturbations
are also of considerable theoretical interest because they
suggest possible precursors for ENSO events as well as
dynamical mechanisms that may be particularly effec-
tive for triggering or disrupting events. The most rapidly
growing perturbations of the coupled system are the
singular vectors of the linearized operators that describe
the system dynamics. Since the singular vectors are the
most rapidly growing perturbations that can exist in the
system while linear dynamics are valid, they are often
referred to as the optimal perturbations (Farrell 1982).
To date several groups have computed the optimal

perturbations of various different coupled models. Due
to the computationally intensive nature of these calcu-
lations all but one of these studies have been limited to
coupled models of intermediate complexity. The models
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used include purely dynamical models (Moore and
Kleeman 1996, 1997a,b; Chen et al. 1997; Thompson
1998), models with a dynamical ocean and a statistical
atmosphere (Fan et al. 2000; Eckert 1999), and linear
inverse (statistical) models fitted to either the output of
an existing dynamical coupled model (Blumenthal 1991;
Xue et al. 1994, 1997a,b; Fan 1998; Fan et al. 2000;
Thompson and Battisti 2001) or fitted to observations
(Penland and Sardeshmukh 1995; Y. Xue 1999, personal
communication; Johnson et al. 1999, unpublished man-
uscript). Each model produces what one might consider
reasonable simulations of ENSO and demonstrates sim-
ilar levels of ENSO forecasting skill. However, their
optimal perturbations, while qualitatively similar with
respect to thermocline structure, show pronounced dif-
ferences in sea surface temperature (SST).
For optimal growth times, ;90 days, the thermocline

structure of the optimal perturbations is often charac-
terized by an initially large displacement in the west
Pacific that propagates east as an equatorial Kelvin wave
initiating an ENSO episode upon its arrival in the central
and east Pacific (see Fig. 17a for an example) (Moore
and Kleeman 1996; Thompson 1998). Fan et al. (2000)
find a similar result for longer optimal growth times
depending on the perturbation growth norm chosen. De-
pending on the model, these changes are supplemented
by long oceanic Rossby waves also present in the initial
thermocline structure that reflect from the western
boundary (also apparent in Fig. 17a). For longer optimal
growth times the thermocline structure in some models
is more uniform along the equator (Xue et al. 1997a;
Thompson 1998; Fan et al. 2000). Recent linear inverse
model calculations of the optimal patterns of upper-
ocean heat content anomalies suggest that thermocline
anomalies are largest in the west and central Pacific but
do not extend to the western boundary (Johnson et al.
1999).
The SST optimal perturbation structures of each cou-

pled model agree to a lesser degree with each other,
although most do share the common feature of having
largest initial amplitude in the east and/or central Pacific.
There is some deviation though in the geographical lo-
cation of the SST maximum. The model that stands apart
from all the other studies, however, is that of Kleeman
(1993), which produces an optimal SST structure that
has largest amplitude primarily in the western Pacific.
The perturbation heat flux of this optimal perturbation
(Kleeman and Moore 1997) qualitatively resembles that
observed in connection with intraseasonal variability,
and it has been argued by Moore and Kleeman (1997b,
1999a,b) that this is consistent with the idea first pro-
posed by Lau (1985) that intraseasonal variability may
act as a trigger for ENSO, or act as a significant sto-
chastic forcing of the system. Observations during the
1997/98 El Niño event in part support this idea
(McPhaden 1999). Apart from perhaps the recent studies
of Eckert (1999) and Y. Xue (1999, personal commu-
nication) none of the other coupled models place such

a strong emphasis on the west Pacific SST as a poten-
tially important region for SST perturbations either as
a trigger for ENSO, as a source of stochastic forcing,
or as a region of potentially rapid error growth in fore-
casts when viewed in terms of the fastest growing op-
timal perturbation. Despite the SST differences between
the optimal perturbation structures of different models,
all of the studies to date agree that the fastest growing
optimal perturbation in each case always develops into
an ENSO episode. Therefore the optimal perturbations
of each model, despite their differences, do offer a
means of understanding forecast error growth and the
predictability of ENSO within a particular model. How-
ever, lack of consensus on optimal perturbation structure
casts a shadow over their value as an indicator of the
dynamics that may be important for triggering ENSO
episodes in nature, and the consequences of this for
limiting ENSO predictability.
In this paper we will explore some of the possible

reasons for the aforementioned differences that exist
between the optimal perturbations of different coupled
models. It will be shown that the effects of important
nonlinearities in the coupled system can be misinter-
preted or completely ignored by standard statistical anal-
ysis techniques. This can have a considerable influence
on the structure and growth rate of the resulting optimal
perturbations of linear inverse models or coupled mod-
els that include a statistical atmospheric component. The
optimal perturbations of such models should therefore
be treated with caution unless steps have been taken to
include the influence that important nonlinearities in the
system have on optimal perturbation structure.
A variety of coupled models derived from the dy-

namical coupled model of Kleeman (1993) have been
used in this study, and each model is described in detail
in section 2. The optimal perturbations of each coupled
model are described in section 3 and the differences
between them are also explored in section 4 using the
concept of nonnormal systems that is central to gen-
eralized stability theory. Other issues relating to the
structure of the optimal perturbations such as state space
truncation and choice of norm are explored in sections
4 and 5. A summary and discussion of the main results
are presented in sections 6 and 7 along with important
conclusions.

2. The coupled models
One dynamical coupled model, two hybrid coupled

models, and two linear inverse models were used in this
study. The hybrid and linear inverse models were de-
rived from the dynamical coupled model so all of the
models used here are very closely related.

a. The dynamical model, DYN
The dynamical coupled model, hereafter referred to

as DYN, is an intermediate coupled model of the tropical
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Pacific Ocean and global atmosphere (Kleeman 1993)
and computes anomalies about the annual mean cli-
matological state of the system prescribed from obser-
vations. A version of the coupled model with a season-
ally varying background state is used operationally at
the Australian Bureau of Meteorology Research Centre
(BMRC) for seasonal forecasting (Kleeman 1989, 1991,
1993, 1994).
The atmospheric component of the model is a two-

level, damped, steady-state Gill model that describes the
anomalous first baroclinic mode circulation of the trop-
ical atmosphere at 750 mb about the observed annual
mean state (Kleeman 1991). The atmosphere is heated
in two ways: (i) by direct thermal forcing (DTF) in the
form of Newtonian relaxation, directly proportional to
SST anomalies, which represents the effects of sensible
heating, shallow convection, and radiation that are not
explicitly parameterized in the model; and (ii) by latent
heating (LH) due to deep penetrative convection in the
atmosphere. DTF and LH are parameterized in the at-
mospheric continuity equation as follows:

DTF 5 e R T /2 (1)a

Q 5 R /2^I {|U|[q (T 1 T )] 1 |U |[q (T 1 T )1 diff diff

2 q (T )]}diff

1 I [(q 1 q)=U 1 q=U 1 (U 1 U)=q2

1 U=q ]& (2)

Q m(T 1 T ) $ mcLH 5 (3)52Q m(T 1 T ) , m ,c
where T is the SST anomaly, U is the wind anomaly, q
is the specific humidity, qdiff(T) is the air–sea specific
humidity difference at temperature T, R is the gas con-
stant for dry air, and ea is a Newtonian cooling coef-
ficient. An overbar denotes observed annual mean cli-
matological quantities, while all other quantities rep-
resent anomalies. Equation (2) results from integrating
the atmospheric moisture equation vertically, and I1 and
I2 incorporate the constants of integration and various
other physical constants (see Kleeman 1989). The first
term in (2) in { . . . } represents latent heat release from
the ocean surface due to convectively induced surface
wind anomalies, while the second term in [ . . . ] rep-
resents latent heat release due to convectively induced
moisture convergence in the atmosphere. The total spe-
cific humidity (q 1 q) increases exponentially with (T
1 T) according to the Clausius–Clapeyron relation. This
has the effect of making the atmosphere more unstable
to convection. This instability manifests itself in the
coupled model as a moisture convergence feedback
through the term RI2(q 1 q)=U/2 in (2). The atmo-
spheric continuity equation can be written as eaF 1
(1 2 r)=U 5 Q9, where F is the geopotential height2ca

anomaly, ca is the first baroclinic mode phase speed, r
5 RI2(q 1 q)/2 , and Q9 5 DTF 1 LH 2 r. By2 2c ca a

Fourier decomposing this form of the continuity equa-
tion Zebiak (1986) showed that as r→ 1 [i.e., increasing
(T 1 T)], the atmosphere becomes more unstable to the
heating Q9, particularly for the smallest scales for which
the wind divergence anomaly increases as Q9/(1 2 r).
The parameter r is also related to the ratio of the low-
level moist static energy m and a quantity proportional
to the mean difference in dry static energy between the
lower and upper levels of the atmosphere (Kleeman
1989). Thus a stepwise nonlinearity (3) is used to ‘‘trig-
ger’’ convective heating anomalies in the model when
m of the boundary layer exceeds the critical value mc,
which corresponds to an SST of approximately 28.58C,
the observed threshold for deep penetrative convection
(Graham and Barnett 1987). Equation (3) shows that
SST perturbations T can either enhance existing deep
convection when LH 5 Q, or shut down existing con-
vection when LH 5 2Q . This kind of behavior has
been observed in atmospheric GCMs with imposed SST
anomalies (e.g., Hoerling et al. 1997), and was also the
basis for locating Tropical Ocean Global Comprehen-
sive Ocean–Atmosphere Data Set in the west Pacific
(Godfrey et al. 1998).
The ocean component of DYN describes the dynam-

ics of the first baroclinic mode subject to the equatorial
long-wave approximation. SST anomalies T evolve ac-
cording to

]T/]t 2 ah 1 eT 5 0, (4)
where h is the ocean thermocline depth anomaly, a is
a constant of proportionality that varies with longitude,
and e is a Newtonian cooling coefficient. Equation (4)
is solved only along the equator, and SST anomalies are
assumed to have a Gaussian structure in the meridional
direction with an e-folding scale of 108 lat, which cor-
responds closely with the atmospheric first baroclinic
mode equatorial radius of deformation. This mimics the
spreading effect that the trade-wind-induced ocean Ek-
man transport has on equatorial SST anomalies. Equa-
tion (4) describes the fact that vertical movements of
the thermocline can create SST anomalies in the pres-
ence of equatorial upwelling along the equator. Different
values are used for a in the west and east Pacific to
reflect the fact that the main thermocline is deeper in
the west than the east, and that in general the rate of
oceanic upwelling is larger in the east and central Pacific
than in the west Pacific. When the thermocline is very
deep or very shallow further changes in depth of the
thermocline do not influence SST anomalies. This is in
accord with observations and is represented by a step-
wise nonlinearity in the second term of (4).
Horizontal advection is also known to influence the

development of SST anomalies (e.g., Picaut et al. 1996)
but its effects are not included in this study in an effort
to minimize the number of factors that influence the
nonnormality of the coupled models. The absence of
horizontal advection in (4) does not affect the ability of
the coupled models to produce ENSO-like oscillations
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(see Kleeman 1993; Moore and Kleeman 1997a,b,
1999b), and does not fundamentally alter the structure
of the optimal perturbations of DYN (Moore and Klee-
man 1999b).
The ability of the coupled model to support self-sus-

taining or damped oscillations depends on the phase
speed of equatorial Kelvin waves in the ocean, co, and
atmosphere, ca, the coupling strength between the ocean
and atmosphere g, which enters as a mean wind speed
in the linear drag law used to compute surface wind
stress anomalies, the Newtonian cooling coefficients ea
and e, and the parameter a in (4). Unless otherwise
stated the following parameter values were used: co 5
2.8 m s21, ca 5 60 m s21, g 5 10 m s21, ea 5 (3
days)21, and a varies between 6.8 3 1029 8C m21 s21

in the west Pacific and 3.4 3 1028 8C m21 s21 in the
east. In this configuration the coupled model supports
a self-sustaining oscillation with a period of approxi-
mately 3.5 yr with characteristics similar to those of the
observed ENSO. Figure 1a shows a Hovmöller diagram
of T along the equator for the oscillation. Principal os-
cillation pattern (POP) analysis reveals that the POP
describing ENSO in DYN is very similar to the ENSO
POP computed from observations (Kleeman and Moore
1999). The effect of the nonlinearity in (3) is apparent
in Fig. 1 where it produces an asymmetry between the
duration of warm and cold events although the ampli-
tudes of warm and cold events are similar. The tangent
linear and adjoint tangent linear versions of DYN were
used to compute the optimal perturbations. The tangent
linear version of DYN linearized about the observed
annual mean state produces an ENSO oscillation with
symmetric warm and cold phases of equal duration as
shown in Fig. 1b. Unless otherwise indicated, in sequel
all references to DYN refer to the tangent linear model.

b. The hybrid coupled models, HCM1 and HCM2
The term ‘‘hybrid’’ as used here refers to a coupled

model composed of a statistical atmospheric model and
a dynamical ocean model. While the term hybrid cou-
pled model (HCM) is normally used to describe coupled
models in which one component is a GCM, our use of
the term here should not cause any confusion. The dy-
namical ocean model is identical to that described in
section 2a. The statistical atmospheric model was con-
structed from a 100-yr time series of T and surface wind
stress anomalies t from the self-sustaining oscillation
of the nonlinear DYN (cf. Fig. 1a). The statistical at-
mospheric model was constructed using singular vector
decomposition (SVD) as described by Bretherton et al.
(1992), and more recently by Syu et al. (1995) with the
objective of finding statistically significant covarying
patterns of T and t . The covarying patterns of T and t
identified this way will be referred to as the SST SVDs
and wind stress SVDs, respectively.
Figure 2 shows the structure of the first two members

of the SST SVD and wind stress SVD spectra. SVD1

and SVD2 account for 99.9% of the covariance of SST
and t in Fig. 1a and have the structure of two phases
of the model ENSO oscillation in quadrature. The wind
stress SVD1 and SVD2 are similar to the first 2 EOFs
computed from observed t by Kleeman et al. (1992),
and agree qualitatively with recent multivariate analyses
of Xue et al. (2000).
The dynamical atmospheric component of DYN was

replaced by a statistical model composed of the first two
SVDs of T and t , and the resulting HCMwill be referred
to as HCM1. A Hovmöller diagram of T along the equa-
tor from the tangent linear version of HCM1 is shown
in Fig. 1c. HCM1 clearly captures the ENSO oscillation
of the tangent linear DYN (Fig. 1b). The tangent linear
ENSO oscillation is shown because this is the version
of HCM1 used to compute optimal perturbations. How-
ever, the ENSO oscillation of HCM1 and its tangent
linear version are very similar because the statistical
atmosphere is linear, and because the thermocline non-
linearity in (4) does not influence the relative duration
of warm and cold events.
The efficacy of HCM1 can be tested by comparing

its ENSO hindcast skill to the skill of DYN. Hindcasts
of 2-yr duration were started on the first of each month
between January 1972 and December 1996 using non-
linear versions of DYN and HCM1 by first spinning up
the ocean component of each model using observed
Florida State University wind anomalies for the 2 yr
prior to the hindcast start date, and then coupling the
ocean and atmospheric models for the next 2 yr (Klee-
man 1993).1 Figure 3 shows the average anomaly cor-
relation between the observed and hindcast Niño-3 in-
dex as a function of hindcast lag time for DYN, HCM1,
and persistence forecasts. Clearly the hindcast skills of
HCM1 and DYN are very similar.
The SVD analysis described above is the standard

statistical approach for finding statistically significant
covarying patterns of two fields. If the values of T and
t are taken at face value then not suprisingly the SVDs
that account for the largest fraction of SST variance
resemble the east Pacific ENSO cycle as Fig. 2 shows
because this is where the largest SST anomalies occur.
However, the annual average temperture of the west
Pacific warm pool is around 298C while in the east
Pacific it is only about 248C. Therefore by virtue of the
Clausius–Clapeyron relation and the moisture conver-
gence feedback, a SST anomaly in the warm pool will
have a larger impact on the atmosphere than an identical
SST anomaly in the cold tongue [see also discussions
by Mayer and Weisberg (1998) and Wang et al. (1999)].
This effect is naturally incorporated in nonlinear DYN
by (1)–(3). Figure 4 shows the standard deviation s of

1 Operationally at BMRC subsurface thermal observations are as-
similated during this stage (Kleeman et al. 1995), which improves
the predictive skill of the model considerably. Data assimilation how-
ever was not included in the hindcasts presented here.
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FIG. 1. Hovmöller diagrams of SST anomaly, T, for the ENSO mode from (a) the nonlinear DYN, and tangent
linear versions of (b) DYN, (c) HCM1, (d) HCM2, (e) LIM1, and (f ) LIM2. In (a) the contour interval is 0.58C.
In (b)–(f) the contour interval is arbitrary and the exponential growth/decay factor of the oscillation has been
suppressed in each case. Shaded regions indicate anomalously warm SST.
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FIG. 2. The first and second SST and wind stress SVDs of the ENSO oscillation of nonlinear DYN. The contour interval and vector
scaling is arbitrary, and the percentage explained covariance of T and t is indicated. Shaded regions represent warm SST anomalies.

FIG. 4. The zonal variation along the equator of the standard de-
viation, s, of SST anomaly for the ENSO oscillation of nonlinear
DYN.

FIG. 3. The average anomaly correlation hindcast skill score (AC)
for Niño-3 index as a function of hindcast lag time for DYN, HCM1,
HCM2, and persistence for the period Jan 1972–Dec 1998.

SST along the equator from DYN and indicates that in
the east Pacific SST anomalies are ;2.58C while in the
west Pacific they are only ;0.58C. However, because
of (3) the lower amplitude SST variability in the west
Pacific will be as important as the larger amplitude var-
iability in the east. The effects of this important non-
linearity, however, are effectively ignored in HCM1
since the smaller amplitude SST variability in the west
is not captured by the dominant SVDs of Fig. 2 that are
retained. The inverse of s in Fig. 4 crudely mirrors the

variation in mean SST along the equator. To allow for
the effects of (3), therefore, a second HCM was con-
structed by scaling T by s(x) at each longitude x before
the SVD analysis of T and t was performed. A SVD
was performed using t and T̂(x) 5 T(x)/s(x) where T̂
is the ‘‘normalized SST.’’ The first two members of the
SST and wind stress SVD spectra in this case are shown
in Fig. 5; they account for 99.7% of the covariance in
T̂ and t . Figure 5a reveals that the west Pacific is now
favored as well as the east by SST SVD1. The resulting
HCM that retains the two SVDs of Fig. 5 will be referred
to as HCM2. The ENSO oscillation of the tangent linear
HCM2 is shown in Fig. 1d and is very similar to that



144 VOLUME 14J O U R N A L O F C L I M A T E

FIG. 5. Same as in Fig. 2 but SST is normalized by its standard deviation at each longitude.

of HCM1. Figure 3 shows that HCM2 hindcasts of
ENSO for 1972–96 are as skillful as those of DYN and
HCM1.

c. The linear inverse models, LIM1 and LIM2
As noted in section 1 some optimal perturbation cal-

culations reported in the literature have been performed
using linear inverse models (LIMs). These are either sta-
tistical reconstructions of the propagator of dynamical cou-
pled models (Blumenthal 1991; Xue et al. 1994, 1997a,b;
Fan 1998; Fan et al. 2000; Thompson and Battisti 2001),
or propagator estimates of the real system using obser-
vational data (Penland and Sardeshmukh 1995; Y. Xue
1999, personal communication; Johnson et al. 1999, un-
published manuscript). In this section we will describe an
LIM of DYN closely following themethodology described
in detail by Penland and Sardeshmukh (1995), hereafter
PS95. PS95 argued that the SST anomalies in the tropical
Pacific and Indian Oceans can be modeled as a linear
system driven by Gaussian white noise so that

dT/dt 5 BT 1 j, (5)
where T denotes the vector of tropical SSTs, B is the
matrix that controls the SST dynamics, and j is a white
noise forcing representing the effects of the nonlinearity
and external forcing. Following Penland (1989, 1996)
the matrix B can be estimated from a time series of T(t),
and is given by

B 5 ln[C(t2 2 t1)C(0)21]/(t2 2 t1), (6)

where C(t2 2 t1) and C(0) are the covariance matrices
of T(t) at lag (t2 2 t1) and lag 0, respectively. Alter-
natively, a propagator D that advances the anomalies
forward in by time by 1 month may be estimated, and
for an autonomous system B 5 Dn, where t2 2 t1 5 n
months. Since the eigenmodes of D and B are identical
for an autonomous system, these two approaches pro-
duce identical results in the present study since the an-
nual average observed fields are used as the basic state.
Using T(t) sampled every month from a 100-yr in-

tegration of nonlinear DYN (cf. Fig. 1a), B was esti-
mated using (6). First, anticipating the importance of
(3) as discussed in section 2b, the normalized SST
anomalies T̂(t) 5 W21T(t) were computed. Two forms
of W were used: W 5 I, which corresponds to the orig-
inal PS95 formulation, and W 5 diag[s(x)]. Second, to
reduce the dimension of the problem, the EOFs of T̂(t)
were computed and only the first two EOFs were re-
tained, which account for 99.3% (93.1%) of the co-
variance in SST and t , when W 5 I {W 5 diag[s(x)]}.
Equation (5) was then formulated in terms of the co-
efficients of the retained EOFs. The vector of EOF am-
plitudes p(t) evolves according to dp/dt 5 Mp where
M is given by (6) if C is the covariance matrix of the
EOF coefficients. If E is the matrix whose columns are
the retained EOFs of T̂, then the reconstruction T̃ of T
in physical space is given by T̃(t) 5 WEp(t). Therefore,
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T̃(t2) 5 WEHETW21T̃(t1) 5 exp[B̃(t2 2 t1)]T̃(t1), (7)

where B̃ is the estimate of B that results from the re-
tained EOFs, and H 5 exp[M(t2 2 t1)] is the propagator
of p. Unless otherwise stated t2 2 t1 5 3 months, al-
though the results presented are insensitive to this choice
of time interval. If W 5 I in (7) the resulting LIM is
referred to as LIM1. Figure 1e shows the ENSO oscil-
lation that results in LIM1, which is clearly very similar
to that of the tangent linear DYN, HCM1, and HCM2.
Choosing W 5 diag[s(x)] yields LIM2, and Fig. 1f
shows that the ENSO oscillation of LIM2 is very similar
to that of the other models.

3. Optimal perturbations

By definition (Farrell 1982), the optimal perturbations
of each coupled model are the eigenvectors of RTR,
where R and RT are the propagators of each tangent
linear coupled model and their adjoints, respectively.
The perturbation growth norm used in this section is
SST2 integrated over the entire tropical Pacific since
this is the norm used in most previous optimal pertur-
bation studies discussed in section 1. Other norms are
considered in section 5. Because of differences in the
formulation of each tangent linear model, the form of
the state vector requires consideration. For DYN the
state vector is composed of T and q, where q is the
vector of parabolic cylinder function amplitudes (see
Kleeman 1993; Moore and Kleeman 1996). Since the
SST2 norm involves only T, we will assume that at
initial time q 5 0, which amounts to an optimal per-
turbation with initially unperturbed ocean thermocline
depth and ocean currents. Thus for the SST2 norm we
need only consider a state vector composed of T. We
will consider two representations of state space. The
first, described here and in section 4a, is based on sta-
tistical analyses and is defined in terms of the SVDs/
EOFs of the system. This is particularly useful for un-
derstanding the behavior of the HCMs and LIMs. In this
case it is instructive to express T(t) as TS(t) 1 TR(t)
where TS(t) is the component of T(t) that projects only
onto the subspace occupied by the retained SVDs/EOFs
of unnormalized SST, and TR(t) is the component of
T(t) that projects onto the subspace not spanned by the
retained SVDs/EOFs. In the HCMs and LIMs of sections
2b and 2c, only two SVDs and two EOFs were retained
that describe the ENSO oscillation, so in this case TS

can also be interpreted as the component of T that pro-
jects onto ENSO. In the HCMs and LIMs we can there-
fore choose the state vector to be either (i) T(0)5 TS(0)
1 TR(0), or (ii) the vector TS(0) of retained SST SVD/
EOF amplitudes only, which amounts to choosing TR(0)
5 0. As we will demonstrate, the choice of state vector
for HCM2 and LIM2 can have a significant impact on
the structure of the optimal perturbations. The second
representation of state space will be introduced in sec-

tion 4b and is based on the eigenmodes of the linear
propagator R.
An optimal growth time of 3 months (i.e., one season)

is used in all calculations described here. In all of the
optimal perturbation calculations reported in the liter-
ature the optimal perturbation spectrum was found to
be dominated by one singular vector. The same is true
of all models used in this study so in the following we
confine our attention to the fastest growing optimal per-
turbation of the SST2 norm.
Fields of T, h, and t for the optimal perturbation of

DYN are shown in Fig. 6. Initially the optimal pertur-
bation takes the form of an SST dipole centered near
the date line in the western Pacific. The structure and
dynamics of this optimal perturbation are discussed in
Moore and Kleeman (1997a,b). As noted by these au-
thors the optimal perturbation evolves into a mature
ENSO episode. The SST2 norm growth factor m is also
indicated in Fig. 6.
The optimal perturbation of HCM1 using T as the

state vector is shown in Fig. 7. The optimal perturbation
that results when using only TS as the state vector [i.e.,
TR(0) 5 0] is identical to Fig. 7. Figures 6 and 7 reveal
that HCM1 does not recover the optimal perturbation
SST structure of DYN. In HCM1 both the initial and
final optimal perturbation SST structures resemble a ma-
ture ENSO episode. The SST2 norm growth factor m is
also indicated in Fig. 7, and shows that the perturbation
grows faster in HCM1 than the optimal perturbation of
DYN. However, the true test of optimal growth is how
fast the optimal perturbation of HCM1 can grow in the
tangent linear version of DYN since HCM1 is an ap-
proximation of DYN. In Fig. 7 (and all subsequent fig-
ures relating to HCMs and LIMs), the SST2 norm
growth factor m of the HCM1 optimal perturbation as
it evolves in DYN is shown in parentheses. Figure 7
indicates that the optimal perturbation of HCM1 actually
decays in time when evolved in DYN, and is clearly a
suboptimal perturbation of the fully dynamical coupled
model.
The optimal perturbations of HCM2 are shown in

Figs. 8a–d using T as the state vector and in Figs. 8e–h
using only TS as the state vector. Figures 8 and 6 reveal
that HCM2 is able to recover most of the large-scale
initial SST structure of the optimal perturbation of DYN,
with largest amplitude in the western Pacific when T is
used as the state vector. When only TS is used as the
state vector the optimal perturbation of HCM2 is similar
to that of HCM1. Irrespective of the state vector used,
Fig. 8 reveals that HCM2 overestimates the growth fac-
tor m compared to the true optimal perturbation in Fig.
6. However, the optimal perturbation of Fig. 8a gives a
m close to the true value when evolved by DYN, while
the perturbation in Fig. 8e is clearly suboptimal in this
regard.
Figure 9 shows the initial and final SST structure of

the optimal perturbation of LIM1 using T as the state
vector. When only TS is used as the state vector the

Eli Tziperman
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FIG. 6. The (a) initial perturbation SST, (b) final perturbation SST, (c) final thermocline depth perturbation, and (d) final perturbation wind
stress for the optimal perturbation of DYN. The contour interval and vector scaling is arbitrary. Shaded regions represent warm SST
perturbations and an anomalously deep thermocline. The SST2 norm growth factor m is indicated.

FIG. 7. Same as in Fig. 6 but for HCM1. The SST2 norm growth factor m for the perturbation evolved in HCM1 (DYN) is indicated.
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FIG. 8. Same as in Fig. 6 but for HCM2 (a)–(d) using T and (e)–(h) TS as the state vector.

optimal perturbation of LIM1 is identical to Fig. 9. Like
HCM1, LIM1 is constructed without regard for the ef-
fects of (3) on the system and is unable to recover the
optimal perturbation of DYN. The optimal perturbation

of LIM1 is clearly suboptimal when evolved in DYN
as m indicates. Figures 10a,b show the optimal pertur-
bation of LIM2 using T as the state vector, which re-
covers the large-scale initial SST structure of the op-
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FIG. 9. The (a) initial and (b) final patterns of perturbation SST
for the optimal perturbation of LIM1. The contour interval is arbi-
trary, and shaded regions represent warm SST perturbations. The
SST2 norm growth factor m for the perturbation evolved in LIM1
(DYN) is indicated.

timal perturbation of DYN. The growth factor m of the
LIM2 optimal perturbation when evolved by DYN is
close to that of the true optimal in Fig. 6. When TS is
used as the state vector Figs. 10c,d show that the optimal
perturbation of LIM2 is similar to that of LIM1.
The effect on the optimal perturbation of retaining

more SVDs in the HCM is illustrated in Fig. 11, which
shows the initial optimal perturbation SST structure of
HCM1 and HCM2 when the first 4 and 12 SVDs are
used and T is the state vector. For HCM1 (HCM2),
SVDs 3→ 4 and 3→ 12 account for 0.110% (0.291%)
and 0.112% (0.297%), respectively, of the covariance
of T and t . As the number of SVDs increases, HCM1
does not recover the optimal perturbation of DYN. How-
ever the addition of more SVDs to HCM2 yields a better
representation of the DYN optimal perturbation. This is
true only up to a point, however, and when the number
of SVDs increases beyond 20 or so the optimal pertur-
bations in HCM1 and HCM2 become dominated by un-
physical small scales. However, all optimal perturba-
tions of HCM1 and HCM2 are suboptimal when they
are evolved in DYN. The optimal perturbations of LIM1
and LIM2 as the number of EOFS retained in E is in-
creased are shown in Figs. 11e–h, and exhibit the same
general behavior as those of the HCMs. For LIM1
(LIM2), EOFs 3 → 4 and 3 → 12 account for 3.1%

(5.5%) and 3.7% (6.9%), respectively, of the variance
in T. Notice the enormous growth factors m attained by
the optimal perturbations of the LIMs when 12 EOFs
are retained due to the fact that the small-scale EOFs
help to conceal ENSO. However, these perturbations are
extremely suboptimal and decay very rapidly when
evolved in DYN.
To demonstrate the influence of (3) on the optimal

perturbations of DYN, Fig. 12a shows the optimal per-
turbation initial SST of DYN when DTF ± 0 and LH
5 0 in (3) everywhere, which removes the nonlinear
effect of the warm pool on the atmosphere. As shown
by Moore and Kleeman (1999b), LH acts to destabilize
the coupled system, so the coupling strength g was in-
creased to 20 m s21 to yield a self-sustaining oscillation.
In this case the optimal perturbation more closely re-
sembles that of HCM1 and LIM1. Figure 12b shows the
optimal perturbation initial SST for the case when DTF
5 0 in (1) and LH ± 0, with g 5 20 m s21—the SST
dipole of DYN in the west Pacific is recovered (cf. Fig.
6a) and is clearly associated with LH.
The results above suggest that weighting the SST by

its standard deviation in the computation of the SVDs
for HCM2, or for estimating B̃ in LIM2, can mimic the
effect that the tangent linear form of (3) has on the latent
heating of the atmosphere over the warm pool in DYN,
provided that the state vector projects onto the entire
space of T spanned by both TS and TR. To further dem-
onstrate the importance of allowing for the effects of
(3) in the construction of the HCMs and LIMs, HCM1
and LIM1 were reconstructed using time series of T and
t from a version of nonlinear DYN with LH 5 0 and
g 5 20 m s21. Thus the effects of the nonlinearity (3)
on SST were removed from the system. In this case an
ENSO oscillation similar to that in Figs. 1b–f results
(not shown). The optimal perturbations of the new
HCM1 and LIM1 are shown in Figs. 12c and 12d, re-
spectively, and are a reasonable representation of the
corresponding optimal perturbation of DYN shown in
Fig. 12a.

4. Optimal perturbation structure: State space
considerations and nonnormality
In this section we will demonstrate that the difference

in optimal perturbation structure between the HCMs and
LIMs with unnormalized and normalized SST is related
to the differing degrees of nonnormality of the two mod-
els.

a. The hybrid and linear inverse models
The results of section 3 show that the contribution of

TR(0) to the optimal perturbation of HCM2 and LIM2
is crucial for recovering the optimal perturbation struc-
ture of DYN. The role played by TR in controling op-
timal perturbation growth can be clarified by the fol-
lowing analysis. We will denote by T(t) the SST com-
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FIG. 10. Same as in Fig. 9 but for LIM2 using (a),(b) T and (c),(d) TS as the state vector.

ponent of the state vector of the optimal perturbation,
and following section 3 let T(0)5 TS(0)1 TR(0) where
TS(0) 5 siti is the component of T in the HCMs2Si51
and LIMs that projects onto the SST SVDs/EOFs de-
noted t i, and TR(0) is a residual term that does not span
the space occupied by t1 and t2 so that (0) · TR(0) 5TTS
0.
In HCM1 and LIM1 the SST SVDs/EOFs are or-

thogonal and normalized so that · t j 5 dij. The growthTti
factor m(t) of the optimal perturbation SST2 norm over
the time interval t is given by

T T TT (t) · T(t) T (0)R · RT(0)
m(t) 5 5 , (8)

T TT (0) · T(0) T (0) · T(0)
where as before R is the tangent linear propagator. Equa-
tion (8) can be reexpressed as

T T T T T T T TT (0)R · RT (0) 1 T (0)R · RT (0) 1 T (0)R · RT (0) 1 T (0)R · RT (0)S S S R R S R Rm(t) 5 . (9)
T TT (0) · T (0) 1 T (0) · T (0)S S R R

1) LIM1 AND HCM1

It is instructive to consider first the growth factor m(t)
in the context of LIM1 and HCM1 since (9) reduces to
a common form for both models. For LIM1 (and LIM2),
(7) shows that TR(t) 5 RTR(0) 5 WEHETW21TR(0) 5
0. Therefore even if an initial perturbation T(0) spans
the entire space defined by TS and TR, at later times T(t)
will occupy only the space spanned by the retained
EOFs of TS. Thus (9) reduces to

TT (t) · T (t) AS Sm(t) 5 5 , (10)
T TT (0) · T (0) 1 T (0) · T (0) 1 1 BS S R R

where A 5 (t) · TS (t)/ (0) · TS (0) and B 5T TT TS S
(0) · TR(0)/ (0) · TS(0).T TT TR S
Consider now HCM1 and let G represent the auton-

omous propagator that advances the tangent linear so-
lution forward Dt, where t 5 NDt. Using the multipli-
cative property of autonomous propagators we have R
5 GN. The SST SVDs and wind stress SVDs used in
HCM1 are not eigensolutions of its propagator R, so
over time part of TS will map into the space spanned
by TR. Since TR has no projection on t1 and t2 it produces
no wind field and hence no ocean thermocline pertur-
bation h. Thus in general from (4) GnTS(0) 5 TS(nDt)
1 TR(iDt)e2e(n2i)Dt where (iDt) · TR(iDt) 5 0.n TS Ti51 S
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FIG. 11. The initial perturbation SST of the optimal perturbations for HCM1 and HCM2 with (a), (c) 4 SVDs and (b), (d) 12 SVDs; and
LIM1 and LIM2 with (e), (f ) 4 EOFs and (f ), (h) 12 EOFs. The contour interval is arbitrary, and shaded regions represent warm SST
perturbations. The percentage explained covariance of SST and t of the retained SVDs is indicated in (a)–(d), while in (e)–(h) the percentage
explained variance of SST of the retained EOFs is shown. The SST2 norm growth factor m of each perturbation evolved in each model and
DYN (value in parentheses) is indicated.
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FIG. 12. The initial perturbation SST for the optimal perturbations of DYN when (a) DTF ± 0, LH 5 0, (b) DTF 5 0, LH ± 0. The
initial perturbation SST for the optimal perturbation of (c) HCM1 and (d) LIM1 when DTF ± 0 and LH 5 0. The contour interval is
arbitrary, and shaded regions represent warm SST perturbations.

Similarly according to (4) RTR(0) 5 TR(0)e2eNDt and,
after some manipulation, we have [RTS(0)]T · [RTR(0)]
5 TR(iDt)T TR(0)e2e(2N2i)Dt. For NDt ; 3 months,NSi51
e2eNDt ; 0.07 so assuming that (iDt) · TR(0) #TTR
· TS, a reasonable approximation since TR(iDt) is typ-TTS

ically small, then [RTS(0)]T · [RTR(0)] and [RTR(0)]T ·
[RTS(0)] in (9) are negligible. Similarly, (t) · TR(t) 5TTR
TR(0)e22Net is negligible and (9) for HCM1 reduces to
(10).
Consider now the conditions that must be met by the

TS(0) and TR(0) components of the optimal perturbation
of LIM1 and HCM1 to yield the maximum possible
value of m(t) given by (10). Since B $ 0, the maximum
value of m(t) for HCM1 and LIM1 can be achieved only
if B 5 0, which corresponds to TR(0) 5 0, and yields
m(t) 5 A. Therefore the initial perturbation of HCM1
and LIM1 that produces the largest growth of m(t) must,
by necessity, project only onto the subspace spanned by
the retained SST SVDs/EOFs ti. Therefore the initial
SST of the optimal perturbations in Figs. 7 and 9 are
linear combinations of only t1 and t2. This explains why
the optimal perturbation structures of HCM1 and LIM1
are identical irrespective of whether T or TS is chosen
as the state vector.

2) LIM2 AND HCM2
The expression (8) for m(t) also reduces to a common

form for LIM2 and HCM2. In this case the optimal

perturbation SST is given by T(0) 5 WT̂(0) 5 W
ŝi t̂i, which relates the normalized (T̂) and unnor-2Si51

malized (T) SST vectors, where W 5 diag[s(x)], and
t̂i are the SST SVDs/EOFs derived from T̂ and t such
that · t̂j 5 dij. Let T̂S be the component of normalizedTt̂i
SST T̂ that spans the subspace defined by t̂1 and t̂2, and
T̂R the component and subspace of T̂ that is orthogonal
to T̂S. Following section 4a(1), T(0)5 [TS(0)1 TR(0)],
where now TS(0) 5 WT̂S(0) 5 ŝi W t̂ i, TR(0) 5NSi51
WT̂R(0), and (0) · T̂R(0) 5 0. The vectors W t̂i are notTT̂S
orthogonal so in general (t) · TR(t) ± 0. The growthTTS
factor m(t) given by (8) can now be written as

A 1 Ctm(t) 5 , (11)
1 1 C 1 B0

where A and B are defined in section 4a(1), and Ct and
C0 are the dot-product terms Ct 5 (t) · TR(t)/T2TS
(0) · TS(0), and C0 5 (0) · TR(0)/ (0) · TS(0).T T TT 2T TS S S

For LIM2, Ct 5 0 since according to (7) TR(t) 5 0, but
in general C0 ± 0. For HCM2, Ct and C0 do not in
general vanish so there is no requirement for TR(0) to
vanish when m(t) attains its maximum value. The op-
timal perturbations of HCM2 and LIM2 will therefore
span the complete space occupied by TS and TR. The
TR component, however, produces no dynamical re-
sponse in the atmosphere or ocean and will decay ex-
ponentially in time in HCM2, while in LIM2 it vanishes
immediately according to (7). The nonorthogonality of
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FIG. 13. The TR component of the initial perturbation SST of the
optimal perturbation of HCM2.

TABLE 1. Values of |n | for the ENSO modes of each coupled
model indicated where n is defined in the main text.

Model |n |

DYN
DYN, LH 5 0
HCM1
HCM2
LIM1
LIM2

3.6
1.8
1.2
2.8
1.1
1.9

TS(0) and TR(0) in HCM2 and LIM2 means that it is
possible for TR(0) to conceal a large amplitude TS(0)
component. As the optimal perturbation evolves TR de-
cays revealing TS. To illustrate, Fig. 13 shows TR(0) for
the optimal perturbation of HCM2, and by adding this
to TS(0) shown in Fig. 8e the optimal perturbation of
Fig. 8a is recovered. As Fig. 8e shows, the structure of
TS(0) resembles a mature ENSO episode, and has little
in common with the overall initial SST structure of the
optimal perturbation in Fig. 8a. The residual TR(0) con-
ceals the ENSO structure of TS(0), and the latter emerg-
es and dominates the optimal perturbation as TR(0) un-
dergoes exponential decay.

b. Quantifying nonnormality
While the SVD/EOF representation of T and T̂ helps

us to understand the optimal perturbation structures of
the HCMs and LIMs via the TS and TR decomposition,
TS and TR are not eigensolutions of the linear propagator
R. A more appropriate and complete representation of
state space for exploring optimal perturbation dynamics
are the eigenmodes of the tangent linear propagator R
of each model. The optimal perturbations of each model
can be represented as a linear superposition of these
eigenmodes. For each model the gravest eigenmode of
R describes the ENSO oscillation (cf. Fig. 1), which we
will refer to as the ENSO mode, and each model is
nonnormal with nonorthogonal eigenmodes. The opti-
mal perturbations of each coupled model evolve into a
mature ENSO episode as shown in Figs. 6–10 so the
optimal perturbations must have a large projection on
the ENSO mode. Therefore the optimal perturbation is
an attempt to initially conceal the ENSO mode using a
linear combination of the other nonorthogonal eigen-
modes of the system. If the eigenmodes were purely
real, this state of affairs is best achieved if the ENSO
mode is almost parallel (or antiparallel) to all of the
other eigenmodes in phase space (Farrell and Ioannou
1996a). Another way of saying this for the more general
case of complex eigenmodes is that there is a high de-
gree of linear dependence between the ENSO mode and

the other eigenmodes. This degree of linear dependence
can be quantified by n 5 |b| |e|/(bH · e) where e is the
ENSO eigenmode of the propagator R, b is the corre-
sponding eigenmode of RT, the so-called adjoint ENSO
mode, and the superscript H denotes the conjugate trans-
pose. For normal systems e and b are identical and |n|
5 1. For purely real eigenmodes n 5 1/cosu, where u
is the angle between e and b. As b and e become more
nearly orthogonal u → 6p/2 and n becomes large. It
is a fact that b is orthogonal to all the eigenmodes of
R except e, so u → 6p/2 corresponds to the case where
e becomes more nearly parallel or antiparallel to the
other eigenmodes of R (or more linearly dependent on
the other eigenmodes in the case of complex eigen-
modes). Thus n is a useful measure of the nonnormality
of the ENSO mode (Farrell and Ioannou 1999). The
larger the value of n the more nearly parallel e is to the
other eigenmodes of R, or the more linearly dependent
e is on these other eigenmodes. Thus as n increases it
becomes easier to conceal the ENSO mode e using a
linear combination of the other eigenmodes. Table 1
shows the values of |n| for the ENSO modes of the
various coupled models used and reveals (a) that the
nonnormality of DYN is strongly influenced by LH, and
(b) that normalizing T by s(x) in the HCMs and LIMs
increases the nonnormality of these models, perhaps re-
introducing some of the nonnormality associated with
LH.
Hovmöller diagrams of SST of the adjoint ENSO

mode b of each model are shown in Fig. 14 using T as
the state vector in the HCMs and LIMs. The similarity
between the SST structure of the adjoint ENSO mode
and the corresponding optimal perturbations of each
model (Figs. 6–10) provides visual confirmation of the
large projection the optimal perturbations have on the
ENSO mode. As t → ` the optimal perturbation and
adjoint ENSO mode of a given model become identical.
Figures 14 and 6–10, however, reveal that this limit is
practically reached after only a few months. Thus the
optimal perturbations resemble very closely the optimal
excitation of the ENSO mode itself for each model.

c. State space truncation and optimal perturbation
structure

Another important issue is the degree to which the
state space of the LIMs and HCMs overlap the state
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space of DYN. Given that dynamical information is jet-
tisoned in the construction of the LIMs and HCMs by
discarding the SVDs/EOFs that account for a small frac-
tion of SST variance, and in the case of LIMs by ig-
noring other dynamical variables, it is clear that the state
space of these models is a subset of the state space of
DYN. In the case of the LIMs it is a severely truncated
subset. Following section 4b, a convenient set of basis
functions for defining the state space of each coupled
model are the eigenmodes of their respective propaga-
tors. The spectrum of DYN is described in appendix A
and possesses 1082 eigenmodes, while HCM1 and
HCM2 possess 1034, and in LIM1 and LIM2 only two
eigenmodes, that are complex conjugates of each other,
are retained that correspond to the POPs of the estimated
propagator.
Recall that the optimal perturbations h of any model

can be expressed as a linear superposition of the non-
orthogonal eigenmodes f i, so that h 5 aif i. TheNSi51
coefficients ai can be determined by applying the biorth-
ogonality relation of section 4b to each eigenmode of
DYN. Figure 15 shows the coefficients |ai| of the optimal
perturbation of DYN (cf. Fig. 6a) for each of the first
40 eigenmodes (see also Fig. A1c). In Fig. 15 the ENSO
mode is eigenmode #2. Clearly the optimal perturbation
is composed of several eigenmodes and many of these
are low-frequency coupled modes that are absent in
HCM1 and HCM2. Only the gravest eigenmode that
defines the ENSO oscillation is retained in LIM1 and
LIM2.
The connection between the statistical and dynamical

representations of state space can now be made. It has
been demonstrated that HCM2 and LIM2 can recover
the optimal perturbation of DYN only if (a) sufficient
SVDs/EOFs are retained, and (b) the optimal pertur-
bations initially project onto the entire state space of T.
A relevant question therefore is whether the dynamics
of the optimal perturbations of HCM2 and LIM2 mimic
those of DYN. As shown in section 4a(2), the optimal
perturbations of HCM2 and LIM2 are composed of com-
ponents TS and TR, and in the cases considered TS pri-
marily describes the ENSO eigenmode. In LIM2, TR
vanishes immediately according to (7) since
ETW21TR(0) 5 0, leaving the ENSO mode described by
TS. In HCM2, TR is exponentially damped and produces
no atmospheric or oceanic response, and so projects only
onto nonoscillatory damped eigenmodes. If the SST
propagator R of HCM2 in gridpoint space is dimension
N 3 N it will possess two eigenmodes with eigenvalues
v and v* that describe the ENSO mode, and N 2 2
eigenmodes with identical eigenvalues e2et that can be
represented as linear combinations of the SST SVDS
not retained in TS. It is these latter eigenmodes onto
which TR of the optimal perturbation of HCM2 projects.
Figure A1c shows the eigenfrequencies of the eigen-
modes for which |ai| . 1022 in Fig. 15. Clearly the
optimal perturbation of DYN is composed primarily of
oscillating eigenmodes and not stationary modes of

which there are very few. Thus even though HCM2
recovers much of the SST structure of the optimal per-
turbation of DYN, the evolution of the two perturbations
is described by eigenmodes with very different dynam-
ics. The two SVDs that make up the atmospheric com-
ponent of HCM2 (Fig. 5) represent the SST and wind
stress of two phases of the ENSO mode in that model.
Thus the ENSO mode is the only coupled ocean–at-
mosphere oscillating mode that HCM2 can support. As
shown in the appendix the only other oscillating eigen-
modes that will be present in HCM2 are those associated
with the ocean alone and these are primarily decoupled
from the atmosphere.
In the optimal perturbation of DYN the ENSO mode

is concealed by several low-frequency coupled modes
that dissipate to reveal the ENSO mode. In HCM2 this
behavior is mimicked by nonoscillating, damped modes
described by TR, while in LIM2 it is achieved by the
immediate disappearance of TR. Clearly the dynamics
of the optimal perturbations of the HCMs and LIMs
differ from their DYN counterpart.

d. LIMs constructed from SST and h
In addition to SST, some of the LIM calculations re-

ported in the literature have used thermocline depth h or
upper-ocean heat content anomalies and wind stress
anomalies to compute optimal perturbations. (Blumenthal
1991; Xue et al. 1994, 1997a,b; Y. Xue 1999, personal
communication; Johnson et al. 1999, unpublished man-
uscript). Since h and heat content are probably not strong-
ly influenced by nonlinearity, and heat content anomalies
have a large ampltiude in the west and central Pacific, it
is seems logical to suppose that LIMs constructed from
these fields may be able to reproduce the optimal per-
turbation structure of DYN. To test this idea two variants
of LIM1 and LIM2 were constructed using time series
of T and h from a 100-yr integration of nonlinear DYN.
We will refer to the LIMs that use unnormalized and
normalized SSTs as LIM1A and LIM2A, respectively.
As shown in section 4b the adjoint ENSO mode is a good
surrogate for the optimal perturbation for the 3-month
optimal growth time used here. Figure 16 shows Ho-
vmöller diagrams of T and h along the equator for the
adjoint ENSO mode of LIM1A and LIM2A. Also shown
in Fig. 16a is a Hovmöller diagram of the adjoint ENSO
mode h field (see Fig. 14a for the corresponding structure
of T). Figure 16b reveals that when unnormalized SSTs
are used as in LIM1A the adjoint ENSO mode SST
structure is incorrect and similar to that of LIM1 (Fig.
14d). However, the adjoint ENSO mode h structure (Fig.
16c) is reasonably well captured by LIM1A. When nor-
malized SSTs were used as in LIM2A both the SST and
h structure of the adjoint ENSO mode (Figs. 16d,e) were
recovered reasonably well. Therefore Fig. 16 reveals
that the use of h field data in the construction of the
LIMs does not guarantee that the SST structure of the
resulting optimal perturbations will be correct. Inter-
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FIG. 14. Hovmöller diagrams of SST along the equator for
the adjoint ENSO modes of (a) DYN, (b) HCM1, (c) HCM2,
(d) LIM1, and (e) LIM2. The timescale is reversed relative
to Fig. 1 because the adjoint model is integrated backward in
time. The contour interval is arbitrary, and the exponential
growth/decay factor of each eigenmode has been suppressed.
Shaded regions represent warm SST perturbations.
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FIG. 15. The magnitude of the eigenmode projection coefficient |ai|
of the optimal perturbation of DYN on the first 40 eigenmodes with
largest eigenvalue modulus of the tangent linear coupled model.

estingly LIM1A and LIM2A are not able to recover all
of the details of the optimal perturbation h structure of
DYN. This appears to be due to severe state space trun-
cation of the LIMs discussed in section 4c. However in
common with the optimal perturbations of DYN, Figs.
16c,e show that the LIMs do recover the thermocline
maximum displacement in the central Pacific (analogous
to a heat content maximum or minimum), which is an
observed feature of the tropical Pacific prior to El Niño
episodes. Since t is slaved to T in DYN, using wind
stress in the construction of the LIMs does not contribute
any additional information.

5. Norm dependence
So far our attention has been confined to the SST2

norm. In this case it was found that when SST is suitably
normalized a HCM and LIM can recover the gross fea-
tures of the optimal perturbation of the dynamical model
from which the HCM and LIM are derived. It is per-
tinent to ask whether these same results carry over to
other norms.
In this section we will consider three generic types

of norms. Using the notation of section 4, these are
1) norms that do not depend on T,
2) norms that depend only on the TS component of T,
3) norms that depend on both the TS and TR components
of T,

where TS and TR refer to the components of the HCMs
and LIMs only. A specific example of each of type of
norm will be considered. The perturbation energy of the
ocean EO was used as an example of the form 1 under
the assumption that T 5 0 at initial time for optimal
perturbations of this norm. The combined perturbation
energy of the atmosphere and ocean ET was used as an
example of the form 2 since TR does not contribute to
the energy of either component of the coupled system.
A mixed norm N 5 aTT · T 1 bEO was used as an
example of the form 3, where the weighting coefficients
a and b control the relative contributions of SST and
ocean energy to the norm. The initial structures of the

optimal perturbations of each norm from DYN, HCM1,
and HCM2 are shown in Fig. 17. For norms that can
be applied to the linear inverse models LIM1 and LIM2
we anticipate that the same general results described
below will apply. The results shown in Fig. 17 are sum-
marized below and in each case T was used as the state
vector for the HCMs and LIMs.

a. Ocean energy norm, EO

Since a norm of the form 1 does not explicitly involve
SST, the thermocline depth structures of the optimal
perturbations of each model by and large agree as shown
in Figs. 17a–c. Recall the assumption that T(0) 5 0.

b. Total energy norm, ET

Only TS contributes to norms of the form 2 so the
optimal perturbations of HCM1 and HCM2 are similar
to each other as shown in Figs. 17e,h and 17f,i since
TR 5 0 for both. The HCMs can recover the thermocline
structure of the optimal perturbation of DYN but not
its SST structure. The latter is due to two factors. First,
the ET norm renders the atmosphere of each HCM es-
sentially normal so that only TS contributes to their op-
timal perturbations (see section 4c). Second, the state-
space truncation of the HCMs means that the high wave-
number eigenmodes that are so prominent in the optimal
perturbation of DYN (Fig. 17d) are absent in the HCMs
(see section 4d). The origin of these high wavenumber
eigenmodes is discussed in Moore and Kleeman (1996).

c. Mixed norm
In the case of the mixed norm, HCM2 is capable of

recovering all of the gross features of the thermocline
depth and SST of the optimal perturbation of DYN pro-
vided enough SVDs are retained in its atmospheric com-
ponent (Figs. 17l,o). The nonnormality reintroduced
into the system by W 5 diag[s(x)] allows TR ± 0 to
conceal the ENSO eigenmode signature in the initial
SST structure of the optimal perturbation of HCM2. For
the optimal perturbation of HCM1 (Fig. 17k,n) TR 5 0
at initial time as discussed in section 4a(1). Figures
17j–o show the case for a 5 b 5 1 but the same general
results hold for other combinations of a and b (not
shown).

6. Summary and conclusions
We have examined the idea that a shortcoming in the

ability of statistically based coupled models and linear
inverse models may be one reason why the SST struc-
tures of the optimal perturbations of various different
coupled models reported in the literature differ from
one another. This idea has been explored using a dy-
namical coupled model and various approximations to
it in the form of HCMs, that replace the dynamical



156 VOLUME 14J O U R N A L O F C L I M A T E



15 JANUARY 2001 157M O O R E A N D K L E E M A N

FIG. 17. The initial perturbation SST T and/or thermocline depth perturbation h for the optimal perturbations of DYN, HCM1, and HCM2
using (a)–(c) an ocean energy norm, O; (d)–(i) the total energy (atmosphere energy 1 ocean energy) norm, T; and (j)–(o) the mixed normE E
aTT · T 1 b O, with a 5 b 5 1. The contour interval is arbitrary, and shaded regions represent warm SST anomalies and an anomalouslyE
deep thermocline. The growth factor m of the corresponding norm of each perturbation evolved in each model and DYN (value in parentheses)
is indicated.

←

FIG. 16. Hovmöller diagrams along the equator of the adjoint ENSO modes of (a) h for DYN, (b) T for LIM1A, (c) h for LIM1A, (d) T
for LIM2A, and (e) h for LIM2A. The timescale is reversed relative to Fig. 1 because the adjoint model is integrated backward in time. The
contour interval is arbitrary, and the exponential growth/decay factor of each eigenmode has been suppressed. Shaded regions represent
warm SST anomalies and an anomalously deep thermocline.
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atmospheric model with a statistical approximation, and
LIMs based on time series derived from the dynamical
model. The main finding of this paper is that if there
are important nonlinearities in the dynamical model that
exert a considerable influence on the model variables
used in the construction of the HCMs and LIMs, and
that also influence the structure of the optimal pertur-
bations in the dynamical model, then this must be ac-
counted for in some way during the construction of the
HCMs and LIMs. If not the HCMs and LIMs may be
unable to recover the correct optimal structures of the
dynamical model. In addition the state-space truncation
of the HCMs and LIMs will prevent them from recov-
ering the optimal structure unless the optimal pertur-
bations project onto the entire state space of the system.
The important nonlinearity discussed here is the rel-

ative influence of equal amplitude SST anomalies in the
west and east tropical Pacific on the atmospheric cir-
culation, as governed by the Clausius–Clapeyron rela-
tion and moisture convergence feedback by virtue of
the warm average SSTs that prevail in the warm pool
of the western tropical Pacific. As a result of this, the
atmosphere is generally close to a state of convective
instability over the warm pool, and SST anomalies of
only a few tenths of a degree can initiate large changes
in the surface wind stress due to changes in deep pen-
etrative convection. This nonlinearity is included in the
dynamical coupled model of Kleeman (1993) used here.
The growth of perturbations in the tangent linear dy-
namical coupled model is strongly influenced by the
tangent linear convective process, which is one factor
that controls the nonnormality of the ENSO mode of
the system (Moore and Kleeman 1999b). The nonnor-
mality of the ENSO mode translates into the ability to
construct perturbations that excite the ENSO mode, and
at the same time grow rapidly even if the ENSO mode
is stable. As the nonnormality of the ENSO mode in-
creases it becomes easier to conceal it using a linear
combination of the other nonorthogonal eigenmodes. In
the Kleeman coupled model this leads to an optimal
perturbation with an initial SST structure in the form
of a dipole with largest amplitude over the warm pool
due to the important role played by convectively in-
duced latent heating in this region. Using a standard
approach to the construction of HCMs and LIMs in
which time series of raw SST anomalies are used, these
models fail to recover the optimal perturbation SST
structure of the dynamical model. This is due to the fact
that the ENSO modes of the resulting HCMs and LIMs
are more normal than their dynamical model counter-
part. As a result it is difficult to conceal the ENSOmode,
and the initial optimal perturbation SST structures of
the HCM and LIM resemble the mature phase of the
ENSO mode. This result is not suprising given the fact
that for a normal system the optimal perturbation for
the ENSO mode would be the ENSO mode itself. The
HCM and LIM are nearly normal systems because the
use of raw SST time series used in their construction

gives most weight to regions where absolute SST var-
iability is largest, namely the eastern Pacific. The lower
amplitude variability in the west, that is just as important
as the variability in the east in the dynamical model, is
relegated to SVDs or EOFs that account for a small
fraction of variability of the raw data and that are typ-
ically discarded. If instead of using raw SST data we
use SST that is suitably scaled to reflect the importance
of SST variability in the west, then nonnormality is
reintroduced into the system and the HCM and LIM can
recover the gross features of the optimal perturbation
SST of the dynamical model. It has been demonstrated
that normalizing the SST yields optimal perturbations
that may project onto the entire state space of SST.
The ability of the HCMs and LIMs to recover the

correct optimal structures also depends on the state-
space truncation of these models. In the case of the LIMs
this truncation can be severe. In a dynamical model, the
optimal perturbation may be a linear superposition of
many eigenmodes, but many of these modes may have
been filtered out of the HCMs and LIMs by the statistical
approximations they employ. Thus even if DYN, HCM,
and LIM produced ENSO modes that were nonnormal
to the same degree, their optimal perturbations could
still be different and evolve differently. In practice we
have seen that a HCM and LIM that are constructed
using suitably weighted SST anomalies are capable of
recovering the optimal perturbation structure of the dy-
namical model. However given the different dimensions
of state space in the HCM and LIM compared to the
dynamical model, the dynamics of the eigenmodes that
conceal the ENSO mode component of the optimal per-
turbation need not be the same in each model. In the
cases examined here we found that the optimal pertur-
bation of DYN was composed primarily of low-fre-
quency coupled eigenmodes. The optimal perturbation
of the HCM2, however, while very similar in structure
to that of DYN, was composed primarily of damped,
nonoscillating modes. In the case of LIM2, the com-
ponents of the initial optimal perturbation that do not
project into the ENSO mode vanish immediately. There-
fore HCM2 and LIM2 provide misleading information
about the dynamics of optimal perturbation growth even
though their optimal perturbation structures are by and
large correct.

7. Discussion
There are two primary reasons why the optimal per-

turbations of ENSO models have received so much at-
tention. First, for a particular model, they offer a means
of understanding and quantifying the growth of initial
condition errors during ENSO forecasts. The problem
of error growth is clearly model specific, so differences
in SST structure between the optimal perturbations of
different coupled models is of interest only because it
may help explain the difference in forecast skill dis-
played by different models for specific ENSO events.
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Second, the optimal perturbations suggest possible dy-
namical mechanisms by which ENSO episodes may be
triggered or affected by perturbations that arise in na-
ture. An extension of the optimal perturbation theory
used here demonstrates the role that these perturbations
can also play in the presence of stochastic forcing (Klee-
man and Moore 1997), a subject of considerable debate
at the present time with regard to the relationship be-
tween the Madden–Julian oscillation and ENSO (Kerr
1999). Lack of consensus on the correct optimal per-
turbation for ENSO is therefore clearly a problem in
this regard because different models may display sen-
sitivity to different kinds of perturbations arising from
quite different physical phenomena. In the light of these
comments we will consider the relevance of our results
to previous work with coupled models, and to the real
coupled system.

a. Relevance of results to other coupled model
studies
It is of interest to place the results of this paper in

the context of the optimal perturbation calculations re-
ported elsewhere in the literature by various investi-
gators using different coupled models. As noted in sec-
tion 1 the models used by other investigators, with the
exception of Eckert (1999), can all be considered as
intermediate coupled models of ENSO. Thus each mod-
el consists of an equatorial ocean model and some form
of simple atmospheric model, either a dynamical model
or a statistical model. The model used by Eckert (1999)
consists of an ocean GCM coupled to a statistical at-
mospheric model. Linear inverse techniques have also
been used to compute the optimal perturbations of either
dynamical coupled models or of the real coupled system.
In the case where they have been computed (see Blu-
menthal 1991; Xue et al. 1994, 1997a,b; Moore and
Kleeman 1996, 1997a,b; Chen et al. 1997; Thompson
1998; Fan 1998; Fan et al. 2000; Eckert 1999), the ther-
mocline depth structures of the optimal perturbations of
each coupled model and LIM are qualitatively similar
to each other. The results of section 5 suggest that this
similarity is due primarily to the role played by linear
equatorial wave dynamics, which are by and large the
same in each model. On the other hand the SST struc-
tures of the optimal perturbations differ between cou-
pled models and LIMs (see Blumenthal 1991; Xue et
al. 1994, 1997a,b, 2000; Penland and Sardeshmukh
1995; Moore and Kleeman 1996, 1997a,b; Chen et al.
1997; Thompson 1998; Fan 1998; Fan et al. 2000; Eck-
ert 1999; Thompson and Battisti 2001). The results of
this study suggest that these differences are most likely
due to differences between the atmospheric components
of the coupled models.
An interesting comparison can also be made between

the results presented here and those from the Zebiak
and Cane model that has been discussed extensively in
the literature. The optimal structures of the Zebiak and

Cane (1987) (ZC) coupled model were computed by
Blumenthal (1991) and Xue et al. (1994, 1997a,b) using
a linear inverse approximation of the dynamical model.
Computation of the optimal structures have also been
made directly using a dynamical model by Chen et al.
(1997) and Thompson (1998) using the Battisti (1988)
version of ZC. The optimal perturbation SST and ther-
mocline depth structures from the dynamical model and
linear inverse approximation of ZC agree with each oth-
er, which at first sight may appear to conflict with the
results presented here. To resolve this apparent conflict
we must consider the dynamics of the atmospheric com-
ponent of the ZC and Kleeman models. The ZC model
does not possess a latent heating nonlinearity like (3)
over the warm pool, but instead includes a nonlinear
total wind-convergence heating anomaly in the east and
southwest Pacific associated with the ITCZ and SPCZ,
respectively. The SPCZ related heating anomalies, how-
ever, turn out to be relatively unimportant in the model
(Zebiak 1986). As shown in Fig. 12a, if LH 5 0 in the
Kleeman model, the location of the optimal perturbation
SST maximum moves into the eastern and central Pa-
cific and is more similar to that of the ZC and Battisti
models than the case when LH ± 0. Figures 12a, 12c,
and 12d also show that a HCM and LIM constructed
from the ENSO oscillation with LH 5 0 recovers the
gross feature of the optimal perturbation SST structure
of the dynamical model. It is our belief therefore that
the similarity in structure of the optimal perturbations
of the ZC model and its linear inverse equivalent is due
to the fact that the region where the nonlinear SST ef-
fects are important (i.e., under the ITCZ) is also within
the region where SST variance is largest, namely the
central and east Pacific. This idea was verified by the
present authors using time series from the Kleeman
model, and artificially increasing the weight given to
SST anomalies in the east Pacific when constructing
HCMs and LIMs to simulate the presence of a nonlinear
atmospheric response to SST there. In this case the SST
structure of the optimal perturbations of the HCMs and
LIMs become more tightly confined to the east Pacific
(not shown).
The results of this study offer a plausible explanation

for some of the differences that exist in the SST struc-
tures of optimal perturbations of various different cou-
pled models and LIMs. In particular they explain why
the SST structure of the optimal perturbations of the
Kleeman model differ from those of other models.
Clearly these ideas deserve more attention since they
strongly suggest that the integrity of optimal perturba-
tion calculations for ENSO based on LIMs or coupled
models that possess statistical atmospheres may be ques-
tionable. The importance of this issue in relation to the
real coupled system can be appreciated by performing
the following thought experiment. Suppose for a mo-
ment that DYN represents the real coupled system. Fig-
ure 6 would then represent the true optimal perturbation
in nature. The HCMs and LIMs, however, represent at-
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FIG. A1. (a) The complete eigenvalue spectrum of the ocean model and SST equation. The eigenmodes evolve in time as e2ivt where v
5 vr 1 ivi in units of 2p (days)21. (b) A close-up view of the ocean model eigenvalue spectrum in the vicinity of the origin within the
dashed box of (a). (c) Same as (b) but for the coupled model DYN. The points denoted by stars in (c) are those eigenmodes for which |ai|
. 0.01 in Fig. 15.
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tempts to construct approximations of the real system
from observations that sample its variability. Figures
7–12 indicate that incorrect estimates of the true optimal
perturbation for ENSO will be obtained using HCMs
and LIMs unless steps are taken to account for the im-
portant effects of nonlinearity in nature.

b. Relevance of results to the real coupled system
It is of interest to consider the relevance of our results

to the real coupled system since clearly the dynamical
coupled model used here is very simple in many re-
spects. We have demonstrated that statistical approxi-
mations of a dynamical coupled model that is known
to possess important nonlinearities may yield unreliable
estimates of the optimal perturbations, unless steps are
taken to incoporate the known influence of nonlinear-
ities on the system response in the statistical models
themselves. The important nonlinearities discussed in
this paper were included in the dynamical coupled mod-
el used here because they are known to exist in the
nature. Therefore the results of this paper are pertinent
to optimal perturbation estimates that have been made
by Penland and Sardeshmukh (1995), Y. Xue (1999,
personal communication), and Johnson et al. (1999, un-
published manuscript) using LIMs constructed from ob-
served SSTs. The results of this study suggest that unless
the influence of the west Pacific warm pool SST non-
linearity is incorporated into a LIM, the resulting op-
timal perturbation estimates may be significantly in er-
ror. To our knowledge, however, the effects of SST non-
linearties on the optimal perturbation structures have not
been explored in the studies cited above. This, however,
raises the important issue of how to correctly incor-
porate the nonlinear influences of SST on the system
into LIMs. In the work presented here we used the some-
what ad hoc, yet physically justifiable method of weight-
ing the SST anomalies at each longitude by the SST
standard deviation. This works well in the Kleeman
model because the SST is computed only at the equator
so only a 1D variation in the nonlinear influence of SST
need be considered (i.e., warm west vs cold east). How-
ever, it is conceivable that other choices of weight func-
tion may perform just as well in terms of recovering
the correct optimal structure. If actual SST observations
from the Pacific Ocean are used to construct a LIM then
the 2D character of SST-related nonlinearities in every
region of the Pacific basin must be considered. Weight-
ing SST by its standard deviation everywhere is clearly
inappropriate in this case since this will emphasize the
importance of SST anomalies not only over the warm
pool where they are known to be important, but also in
regions that may be cold in the mean and have small
SST variance, and where obviously there is no reason
to expect SST anomalies to be any more important than
similar anomalies in a region that in the mean is cold
but characterized by large SST variance. Thus a more
physically based weighting is required; otherwise, by

necessity, the weighting must be based on a priori as-
sumptions about the influence of SST on the atmo-
spheric response in different parts of the basin. The latter
is clearly undesirable since all of the important SST-
related nonlinearities in the Pacific may not yet have
been identified. Clearly the issue of how to correctly
weight observed SST anomalies when constructing
LIMs requires careful consideration. Some of these
problems may perhaps be circumvented using principal
interaction patterns, which are the basis functions of
nonlinear, reduced state space, models of dynamical sys-
tems (Hasselmann 1988). These, and the other issues
discussed above, are currently being explored by the
authors and will be presented elsewhere in due course.
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APPENDIX
Eigenspectra

The optimal perturbations can be represented as a
linear superposition of the nonorthogonal eigenmodes
of the coupled models. While the eigenvalue spectra of
DYN, HCM1, and HCM2 are different, the basic struc-
ture of their spectra is the same and determined by the
ocean component of the coupled models, which is com-
mon to each model. Figure A1a shows the complete
eigenvalue spectrum of the dynamic and thermodynamic
components of the ocean component of the models when
uncoupled from the atmosphere. Note the presence of
a branch of eigenmodes with zero real frequency, which
are nonoscillating modes. The eigenvalue spectrum of
the coupled model DYN is very similar to that shown
in Fig. A1a and a close up view of the origin of the
DYN spectrum is shown in Fig. A1c since this is where
differences exist in the eigenspectra between the ocean
model and coupled model. Fig. A1b shows a close-up
view of the ocean model spectrum in Fig. A1a. The
branch of stationary modes in the ocean model has
changed in the coupled model in which many of these
modes oscillate with low frequency. The eigenvalue
spectra of HCM1 and HCM2 are very similar to those
of DYN (not shown). A number of stationary modes
exist in HCM2, which form the basis for the residual
component TR of the optimal perturbations of HCM2
(see section 4a).
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