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2.3 A heuristic derivation of a delayed oscillator equation

Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [ 12⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating
Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)

dt
= âheq(xc, t�

1

2
⌧K) + b̂hoff�eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where â, b̂, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as
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= ā⌧eq(xc, t�

1

2
⌧K)� b̄⌧eq(xc, t� [

1

2
⌧R + ⌧K ])� cT (t)3

where ā, b̄ are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2
⌧K)� bT (t� [

1

2
⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

T̄ = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T = T̄ + T̃ and linearizing, we have

dT̃ (t)

dt
= T̃ (t)(1� 3T̄ 2)� ↵T̃ (t� �T ).
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Figure 22: Results of the delayed oscillator of equation 10, from [56].
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Letting T̃ = e�t where � = �r + i�i, results in the linearized eigenvalue problem

� = 1� 3T̄ 2 � ↵e���T

(note that this is a complex transcendental equation, with the real and imaginary parts of � satisfying equations
that involve sine and cosine functions) which can be solved for the frequency � as function of the two nondimen-
sional parameters ↵ and �T . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.
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