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the equator. Convergence is best for the thermocline deviation on the equator.
Application of the eastern boundary condition and equating term by term to zero
gives

(ro + bo)e~?(1720) = W%hg
byt @WHDA=20) = 94, nipG
bgj = 0

from which the coefficients b; can be solved. Eventually, the complete solution to
the pulse forcing at x = xg, i.e. the Green’s function for the problem, is found as

G(z,y,6;70) = T hEK(9(1 — 2),y) — L(d(wo — o), y)H(zo — 7) (7.45)

where vector functions K and L are defined as

o0
K(n,y) = e"®o(y)+2Y  agp1e ™™ By11(y)  (7.469)

j=0
o0

L(n,y) = roe"®o(y) — Y (25 + Vrje "@HV&;(y)  (7.46b)
=0

Up to this point, only the eastern boundary amplitude of the thermocline hg is still
unknown, but it can be determined from the western boundary condition (7.33)

and becomes ~
f—oo Lu(¢$0, y)dy

fjooo Ku(é,y)dy

where K, and L, are the first components of K and L, respectively. This com-
pletes the basic machinery needed in the next sections to understand the response
of the ocean to varying wind stress forcing.

71 (s z0) = (7.47)

7.3. Physics of Coupling

Anomalies in sea surface temperature somehow manage to change the winds,
and in the first subsection a model is sketched how to compute the low level wind
response due to SST anomalies. Next, wind stress anomalies induce changes in
the ocean circulation and examples are shown in 7.3.2, using the results of Tech-
nical box 7.1. Finally, a model is considered in 7.3.3 to determine how changes in
ocean circulation induce SST anomalies.

7.3.1. Atmospheric response to diabatic heating

A class of simple models to analyse the low level wind response due to heating
anomalies in the tropics was proposed by Matsuno (1966). These models are also
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of shallow water type, following the same approach as in section 7.2. The steady
response of one of these models was analysed in detail in Gill (1980) and since
then, this type of model is referred to as a Gill model. The equations are

ouU. 00
X By Ve — — U, = 0 7.4
Bt Boy B2, +apm (7.48a)
oV, 00,
*Ux — x* — 0 4
oL + Boy U o + ap Vi (7.48b)
80, ,,0U, 0V,

Q« (7.48¢)

) + ar©.

ot, c“(ax* + Oy

where (Uy, V,) are the low level winds, ©, the geopotential height (with dimen-
sion m?/s2), ays is a damping coefficient and c, is the phase speed of the first
baroclinic Kelvin wave in the atmosphere. The flow is forced by a representation
of the adiabatic heating term @, (having dimension m? / s%). Note the similari-
ties with the reduced gravity ocean model with the difference being in the forcing
terms. More accurate derivations of these type of models can be found in Holton
(1992).
To study the response, it is convenient to scale the equations with

te = EL—t P Ty = LT 5 Yo = Ay (7.49a)
0, = 0;U,=cU; Vi= i“-cav (7.49b)

L

Q = Q; ha= ,/-2%‘5 (7.49c)

Note that the factor 2 in the definition of )\, is different from the scaling of the
ocean model. On the other hand, already anticipating coupling, the time is scaled
with the advective time scale in the ocean. The dimensionless equations become

U y.. 0O |
‘o "3 "ap Tl =0 (7:50)
oV y. 00
2
I § Sdind = .50b
a5y +2U 8y+CaeaV 0 (7.50b)
00 ou oV
cop T ((% By) +€0 = w@ (7.50¢)

with €, = apL/cas pro = qoL/c3, ¢ = co/cq and {; = Aq/L. Of these param-
eters, both ¢ and ¢, are small and to a good approximation, the atmospheric time
derivatives can be neglected, as well as the damping in the meridional momentum
balance. All fields must be bounded far from the equator. The solution of this
linear problem is provided in Technical box 7.2.
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== Technical box 7.2: Solution of - =
‘ the Gill model it

BEND ond RELEASE

With ¢ — 0, ¢, — 0 and by introducing new independent variables S = © +U
and R = © — U the problem (7.50) becomes

v
~(3V + ———)——— €S = poQ (7.51a)
—(S R)—(8—5+g};) =0 (7.51b)
Yy, 9V  OR _
2V 99 +ax+6aR = poQ (1.51¢)

Subsequently, the variables S, R and the forcing ) are expanded into parabolic

- cylinderfunctions Dy, (y) with coefficients depending on z,

Q(z,y,t) = Y _ Qu(z)Dn(y)e™” (7.52a)
n=0

R(z,y,t) = ) Ru(x)Dn(y)e™" (7.52b)
n=0

S(z,y,t) = Y Sn(x) Dn(y)e™ (7.52¢)

|

where a periodic time dependence in the forcing has been assumed with frequency
w. The parabolic cylinderfunctions D,,(y) are related to the Hermite polynomials
through

—_n 2
Daly) = 2‘2‘6—"’4—Hn(%) (7.53)
For all n, the relations
%Dn + D) =nDp_1; %Dn — D! =Dy (7.54)

are valid. Substitution of the expansions (7.52) into the equations (7.51) gives a

system of ordinary differential equations for the coefficient functions Sy, and R,,.
Forn = 0,

€aRo+ Ry —poQo = 0 (7.55a)

R, =0 (7.55b)

€aSo — Sy — V1 — oQo (7.55¢)

l
o
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from which Ry and R; are directly determined. For n = 1, one obtains

€S1— 81 —2Va—po@Q1 = 0 (7.56a)
2Ry = So (7.56b)
Vo—mo@1 = 0 (7.56¢)
from which Vj directly follows. For n > 1, the equations become
€aSn — S;z —(n+ Va1 — po@Qn = 0 (7.57a)
€Rn + R+ Vo1 —0oQn = 0 (7.57b)
(m+1)Rpy1 —Sn-1 = 0 (7.57¢)

Using (7.57¢) to eliminate the terms involving S,, in (7.57a) and adding the results
to (7.57b) for n — n + 2 gives a single equation for Ry 2, n > 0, i.e.

(2n + 3)eaRnt2 — Rippg — 110(Qn + (n+1)Qni2) =0 - (7.58)

from which R, 2 and eventually the total solution for U, V' and © can be calcu-
lated. The results for U and © are

twt

Uz, y,t) = 2 [(2R2(x) — Ro(z))Do(y) + 3R3(z) D1 (y)]
iwt | X
+ 82 I:n;z((n + Q)Rn+2(x) - Rn(x))Dn(y):| (75931)
iwt
O(z,y,t) = 5~ [(Ro(z) + 2R;(z))Do(y) + 3R3(z) D1 (y)]
iwt | X
+ 62 LZ:;((n + 2)Ryt2(z) + Rn(x))Dn(y):| (7.59b)
where }
Ro(z) = po / " Qo(s) ds
0
Rl(ac) = 0
: 1
R ia(2) = o / CrFIE=)(n + 1)Qnea(s) + Qnls)) ds
forn=0,1,---,. This completes the full solution of the Gill model.

—

An example of the steady response of the Gill model is considered with the
forcing described by

Aa )
Q(z,y) = $o(~y) sinmz; w =0 (7.61)

4
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with 1)y the Hermite function defined in (7.18). Note that since y = y«/Aq, the
argument in the Hermite function is y. /), and hence the meridional scale of the
forcing is the Rossby radius of deformation of the ocean. With ¢, = 30 m /s,
co = 2m/s, the ratio of the Rossby deformation radii of atmosphere and ocean is
about 3 (A, ~ 826 km).

The forcing (7.61) is shown Fig. 7.15a and in subsequent panels, the stationary
(w = 0) zonal wind response (7.59a) is plotted for ¢, = 0,2.5 and 5.0. For each
value of ¢,, there are westerly (easterly) winds to the west (east) of the maximum
heating. The signal west of the heating maximum is mainly due to Rossby waves,
while that to the east is due to the Kelvin wave. The zonal wind response becomes
more local as the value of ¢, increases. This is also clear physically, since €, is a
ratio of the basin length L and an atmospheric damping length scale c,/a . When
the damping aps increases, the length scale over which anomalies are damped
decreases and hence the response is more localized to the forcing.

An approximation to the equatorial zonal wind response U is obtained by trun-
cating the solution (7.59a) for only the first three parabolic cylinderfunctions, i.e.
with Do(0) = 1, D1(0) = 0, Do(0) = —1, the equation (7.59a) gives

U(z,0,t) = eiwt(gRg(zc) - %Ro(a:)) (7.62)

where the R, contribution is also neglected. As we will show later on, this ex-
pression turns out to be useful when considering reduced models which only take
the equatorial response into account.

When the diabatic heating structure is known, the low level wind response can
be computed from the Gill model. However, this leaves the problem to relate
the diabatic heating structure and the SST anomalies. The simplest connection
(Zebiak, 1982) is that convection mostly occurs over the warmest water which
leads to a direct coupling with SST anomalies T, and those in latent heat Q,
through

Q: = arTy (7.63)

with some constant coefficient ar (with dimension m?2/(s®K)). If a typical scale
of the temperature anomaly is AT, then ¢y = a7 AT'. The dimensionless param-
eter measuring the amount of heating per SST anomaly is then given by

arATL
c

Ho = (7.64)
which will be part of the main coupling parameter introduced in the ocean-
atmosphere model in subsequent sections. The relation between SST anomalies
and diabatic forcing above is far from perfect and many improvements based on
detailed atmospheric modelling have been suggested (see e.g., Neelin et al. (1998)
and references therein).
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Figure 7.15. (a) Pattern of the diabatic forcing Q(x,y) given by (7.61). The zonal wind response
(7.59b) is plotted for three different values of €, in subsequent panels, (b) €a = 0, (c) €a = 2.5 and
(d) €a = 5.0. Note that y is scaled with Ao = 826 km and that x is scaled with the basin length
L = 1.5 x 10* km. The zonal velocity is scaled with c, = 30 m/s and the factor po = 1.

7.3.2. Adjustment of the ocean

The low level surface winds exert a wind stress on the ocean surface according
to the bulk formula

(7%,7Y) = Capa| U |U (7.65)

where Cy is the drag coefficient, p, the density of airand U = (U, V). Consider-
ing perturbations U from some reference state U, the perturbation wind stress can
be taken proportional to the perturbation velocity in the lower atmospheric layer,



