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ABSTRACT

A simple nonlinear model is proposed for the El Nifio/Southern Oscillation (ENSO) phenomenon. Its key
feature is the inclusion of oceanic wave transit effects through a negative, delayed feedback. A linear stability
analysis and numerical results are presented to show that the period of the oscillation is typically several times
the delay. It is argued such an effect can account for the long time scale of ENSO.

1. Introduction

The purpose of this note is to propose a simple non-
linear model for the ENSO phenomenon. The model
relies on the existence of a strong positive feedback in
the coupled ocean-atmosphere system and on some
unspecified nonlinear mechanism invoked to limit the
growth of unstable perturbations. Its key element is the
inclusion of the effects of equatorially trapped oceanic
waves propagating in a closed basin through a time
delayed term. This simple system has multiple station-
ary states which can all become unstable. When this
happens, solutions are self-sustained oscillations whose
period is at least twice as long as the assumed delay.
We offer this model as an explanation for the results
of simple circulation models (Cane and Zebiak 1985;
Schopf and Suarez 1988) that produce periodic or
nearly periodic behavior, and as a candidate mecha-
nism for ENSO. :

2. The model

The model we envision is sketched in Fig. 1. It as-
sumes the strongest coupling takes place in the central
portion of the basin and that an important side effect
of growing perturbations in this region is the emission
of weakly coupled, westward propagating oceanic sig-
nals that, after reflecting from the western boundary,
return and recouple to the atmosphere. If a coupled
mode is growing strongly, the delayed effect of the re-
turning wave will be small. If, on the other hand, the
mode has begun to equilibrate, the returning signal
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(depending on how much has been attenuated ) can be
an important perturbation. In this section we try to
justify this view and discuss in more detail how these
mechanisms may act in ENSO.

a. Coupled feedback

The amplitude of observed El Nifio variability at
low frequency requires that there exist some strong
positive feedback mechanism to balance the restoring
effects of surface heat exchanges on SST anomalies.
Linear models that isolate such mechanisms have been
discussed by Lau (1981), Philander et al. (1984), Ya-
magata (1985) and Hirst (1985). In these models, the
feedback arises from the coupling of the tropical ocean
and atmoshere: ocean temperature perturbations, pro-
duced by advective processes, result in atmospheric
heating and wind responses that drive ocean currents
s0 as to enhance the original perturbations. The growth
rate of the instabilities in simple models depends on
the product of the strength of the two legs of this feed-
back: how sensitive is the atmospheric heating to SST
anomalies and how sensitive are the SSTs to the re-
sulting wind anomalies.

The east-west structure of the ocean in the tropical
Pacific is characterized by large gradients in SST and
thermocline depth. In the western Pacific, where surface
waters are warm, conditions are favorable for SST
anomalies to influence the atmosphere, but because
the thermocline and the mixed layer are deep and hor-
izontal SST gradients are small, wind anomalies can
have only a small effect on the temperature. In the
eastern Pacific, where waters are cold along the coast
and in a tongue on the equator, the situation is reversed.
With a shallow thermocline and large horizontal gra-
dients, advection (both vertical and horizontal) can
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FIG. 1. Model schematic. In the central to eastern part of the basin,
a strong positive feedback loop exists between SST anomalies, heating
anomalies and surface wind anomalies. In the west, the wind-driven
ocean perturbations do not affect SST; but rather perturb the deep
thermocline. Uncoupled or weakly coupled waves travel to the western
boundary and back to the east, where they affect the SST.

~ easily produce SST anomalies, but over cold surface
waters convective heating in the atmosphere will be
less sensitive to SST. We may thus expect the coupled
feedback to be most effective for an intermediate re-
gion, with largest SST and wind anomalies in the cen-
tral Pacific.

We assume first that we may think of these coupled
processes as acting locally in such a region, and that
they can be characterized by a single amplifying mode,
with SST anomalies on the equator, and precipitation
anomalies producing maximum surface wind anom-
alies near the center of the basin.

b. Nonlinear effects

As such a mode amplifies from an assumed equilib-
rium state, nonlinear effects will come into play to limit
its growth. The two obvious candidates for this limiting
role are advective processes in the ocean and moist
processes (availability of water or other nonlinear lim-
itations on the CISK-like amplification of convection)
in the atmosphere. The former is the dominant effect
in both Cane and Zebiak (1985) and Schopf and Suarez
(1988), although the details of the process are not clear
in either case. Partly because.of this uncertainty, and

partly to keep things as simple as possible, we assume

the nonlinear form
dT/dt = kT — bT>.

Here T represents the amplitude of the growing dis-
turbance, k its growth rate and 57 all nonlinear effects
acting on it at finite amplitude. Scaling time by k™'
and T by (k/b)'/?, we have

dT)dt=T - T>. n

Equation (1) has three stationary states: the assumed
unstable state at 7 = 0 and symmetric stable states at
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T = 1. A bifurcation into three stationary states (which
occurs here at k = 0) is a common feature of these
very dynamical models.

c. Wave propagations

As we argued above, coupling effects may be weak
in the western Pacific. Whether or not this may be true
in nature, it is certainly true in the oscillatory solutions
of Schopf and Suarez (1987) and to a lesser degree in
those of Cane and Zebiak (1985). Thus, let us for the
moment assume that all variations in the western por-
tion of the basin are the uncoupled response emanating
from the coupled action in the eastern portion of the
basin. We now rely on the picture presented by Schopf
and Suarez (1988) for such a situation: The wind
anomalies induced by SST perturbations drive Rossby
waves on the ocean thermocline. These propagate
westward from the coupled region, and on reaching
the western boundary, reflect into eastward propagating
equatorial Kelvin waves. During this transit to the
western boundary, information carried by the signals
is “hidden” from the coupled problem. Upon returning
to the central/eastern portion of the basin, however,
the thermocline displacements have an increasing effect
on SST, due to the shallow mean thermocline depth
there and the strong horizontal gradients in SST. We
may then think of these signals “reentering” the cou-
pled problem after a time delay equal to their transit
time.

Thus the equation for coupled perturbations must
include, in addition to the coupled feedback and non-
linear terms in (1), a term that represents the effect of
these delayed signals. We do this as follows:

dT/dt=T - T® — aT(t - 8), )
where & is the nondimensional delay (wave transit
time), and a measures the influence of the returning
signal relative to that of the local feedback. To adopt
a more precise interpretation of (2), we take the growth
term to represent signals indistinguishable, except for
the timing of their source, from those represented by
the delay term; and that all other “local” effects produce
a net damping that is accounted for in the cubic term.
Since we expect information to be lost in transit by
dissipation and imperfect reflection at the western
boundary we will consider only |a| < 1. Also, follow-
ing the arguments presented in Schopf and Suarez
(1988), this term represents a negative (delayed) feed-
back (i.e., @ > 0). To see this consider, say, a warm
SST perturbation in the coupled region. This produces
a westerly wind response that enhances the perturbation
by tending to deepen the thermocline locally (the cou-
pled positive feedback effect). But these same wind
perturbations produce divergent westward propagating
signals that on returning will tend to produce upwelling
and cooling, damping the original perturbation.

In Schopf and Suarez (1988) we pointed out that
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one might think of these processes as a phase-reversing
reflection off the coupled region: a “warming” signal
enters from the west and a “cooling” signal is reemitted
by wind perturbations produced by the incident signal.
We referred to this as “coupled reflection”. Because
the western reflection (at the rigid boundary) is phase-
preserving and the coupled reflection is phase-reversing,
it will take two transits to the western boundary and
back to return to the original phase. We thus expect
the period of oscillation associated with these propa-
gation properties to be no less than twice the transit
time. We referred to this effect as “period doubling”.
We will show below that oscillatory solutions of (2) in
the range 0 < a < 1 have periods longer than 24.

3. Linear stability analysis

Numerical investigation of (2) can be readily un-
dertaken, and will be presented below. As is often the
case with such problems, however, an analysis of the
linear stability of the equation provides a good indi-
cation of the properties of the fully nonlinear system.
Here, we consider the linearized equation over the pa-
rameter range relevant to our problem: 0 < o« < 1 and
6>0.

In addition to the stationary solution 7T = 0 (the
“inner” stationary state ), the model possesses two ad-
ditional stationary states:

T,=+(1-a)'/? (3

We will examine only the stability of the outer (7,)
solutions. The inner solution always has at least one
unstable nonoscillatory mode in this parameter range,
so that small perturbations from it will grow, but do
not oscillate. In the absence of another instability, so-
lutions would settle to either the “cold” or “warm”
stationary state (3). But depending on « and §, these
“outer” solutions may themselves be unstable and in
this case both the growing perturbations and the
asymptotic solutions are oscillatory.

Neutral curves for perturbations of the outer solutions.
For T = T, perturbations from the stationary solution
obey

for a<l.

dT'/dt = 3 = 2)T' — oT'(t — 5). )]
From (4) we can again emphasize that @ < 1 does not
imply that net local effects are more important than
delayed effects. In the interval Y2 < a < 1, the coefficient
on the local term is always smaller than that on the
delayed term. Seeking solutions of the form 7" = T
X exp(ot), with complex o = o, + is;, we obtain

c=Ba—2)— ae™®, (5)
or
o, = (3a—2) — acos(o;8)e”""°,

(6)
M

o; = a sin(g;8)e™°.
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F1G. 2. Neutral stability curves of the outer stationary solution.
Parameters lying below the lower line are stabie. An infinite number
of additional neutral curves exist to the right of the lines shown, but
are only found for large 4.

The neutral curves (o, = 0) are those for which
d=acos{(3a—2)a}/oa), 8
oi(a) = {a?— (2 — 3a)?}'/2. 9)

For a given value of « in the interval 2 < a < 1,
there are infinitely many neutral curves, but for § < 10
the only neutral curves are those shown in Fig. 2. It is
easy to show that all cases with («, &) lying below the
lower curve are stable. This curve asymptotes to «
= 15 for large 6, and a = 1/4 for é near 1, lying every-
where above these two lines.

It is important to note that the neutral solutions have
a finite frequency. Figure 3 shows the period of the
solution along the lower neutral curve (,(8) obtained
from (8)and (9)), expressed as a multiple of the delay.
This period is always at least twice as long as the delay,
and may be much longer.

4. Numerica} solutions

We explored the behavior of the nonlinear system
(2) numerically. Three typical solutions are shown in
Fig. 4. These are for « = 0.75 and 6 = 2, 6 and 10
(these points are marked on Fig. 5). For large values
of & (Fig. 4c), the solutions approach a square wave,

30

F1G. 3. Period of the neutral solutions to (4) as a function of the
delay. The period is everywhere greater than 24. Dots indicate nu-
merically determined periods for the full nonlinear model near neu-
trality,
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FI1G. 4. Behavior of the nonlinear oscillator. (a) ¢ = 0.75, 6 = 2,
(b)a=0.75,6 = 6,and (c) « = 0.75, & = 10. The time axis is scaled
in units of the delay.

with a period of twice the delay. For smaller é the period
is longer and solutions more sinusoidal. This is clear
from the solution, shown in Fig. 4a, which is near the
neutral curve.

Figure 5 shows the periods obtained from many in-
tegrations of (2) over the a-6 plane. Contours are only
shown for that region where oscillatory solutions were
found, which is bounded by the lower neutral curve

1.00
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and a = 1. The solid lines give the period in nondi-
mensional time units, while the dashed contours pres-
ent the same period as multiples of the delay time. The
longest oscillations for a given delay are found for the
weakest return (smallest ). For 6 < 6 all oscillatory
solutions have periods in excess of 2.5 times the delay.

The full nonlinear solutions agree resonably well
with the linear stability analysis near the neutral curve.
Markers on Fig. 3 show the periods of the numerical
solutions at several values of 4. For each we use the
smallest value of a at which oscillatory behavior was
obtained.

Since in (1) the time is scaled by the e-folding time
of the linearly growing mode (k™'), a weaker growth
for the same delay is equivalent to smaller 8, and there-
fore longer period oscillations. To fix ideas, consider a
case with k! = 50 days and a delay of 400 days, that
is 6 = 8. If we assume « = 0.6, we obtain from Fig. 5
a period of about 2.75 times the delay, or 3 years. If
the e-folding time is increased to 100 days while the
dimensional delay and « are kept the same, 6 is reduced
to 4 and the result is a period about 3.5 times as long
as the delay, or nearly 4 years.

5. Discussion

The model proposed attempts to account for a strong
selection of a time scale of 2 to 4 years by coupled
motions in the tropical Pacific. Such selection occurs
in coupled numerical models (Schopfand Suarez 1988;
Cane and Zebiak 1985), and is at least suggested by
the observations (Rasmusson and Carpenter 1982) for
ENSO.

The model assumes that the time scale must be re-
lated to the propagation times of equatorially trapped
oceanic waves in a closed basin. Solutions depend on
only two parameters: the ratio of a wave transit time
to the e-folding time of the underlying coupled insta-
bility (8); and the relative importance of the local and
delayed wave effects («). Oscillatory solutions occur

0.50

F1G. 5. The fundamental period of the nonlinear oscillator found numerically. The
heavy solid lines are the neutral curves of the linear problem, reproduced from Fig. 2.
The light solid contours give the period of the oscillation (27 /¢;), while the dashed
contours present the period in multiples of the delay.
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if the delayed effects are large enough (a > '2) and the
delay is sufficiently long (roughly, ad > 1).

The period of the oscillation is several times the
transit time from the coupled region to the western
boundary and back. If we express the period as a mul-
tiple of the delay, we find that stronger delayed effects
(greater a) or longer delays (greater d) decrease this
multiple. At very long delays (short e-folding times)
the model flip-flops with a period approaching twice
the delay.

Can this model account for the 2-4 year time scale
of ENSO? There is substantial room for discussion on
this point. The gravest baroclinic mode in the tropical
Pacific has a gravity wave speed of roughly 2.5 m s,
If the center of action for the coupling is near the center
of the basin, waves must travel 8000 km or so to the
western boundary. The first meridional mode Rossby
wave will take roughly 110 days to cover this distance,
and the reflected wave will take another 40 days to
return. Doubling or quadrupling this 150 day delay
then results in a period of less than 2 years. On the
other hand, a significant part of the signal may travel
in higher meridional mode Rossby waves (which would
travel at %; or ¥, the speed of the Kelvin wave), or in
the second vertical mode, with a slower gravity wave
speed. This choice of a slow gravity wave speed (1.2 to
1.4 m s™!) for El Nifio studies has been made by Phi-
lander et al. (1984), Anderson and McCreary (1985),
and Hirst (1985). These effects can lengthen the delay
to a year or more, and result in a period of 2-4 years.
Calculations with general circulation models should
provide a more conclusive answer to how the influence
of wind anomalies in the central Pacific propagates to
the western boundary and then back to influence
the SST.

Another area where detailed modeling can test the
assumptions made here is in showing an appropriate
value for «. If the reflected signal is strongly attenuated
in transit or is scattered at the western boundary, or if
it returns with such a vertical structure as to have a
much smaller effect on SST than the locally forced
motions in the central region, the effective @« may be
small enough to preclude oscillatory solutions by this
mechanism. One way to estimate a would be to attempt
to separate the “local” and “reflected” effects on the
SSTs produced by ocean GCMs during wind-burst ex-
periments, Another and more direct approach would
be to selectively damp the westward propagating signals
in a model that normally exhibits ENSO variability.

Finally, we wish to discuss the drastic assumption
of a localized coupled problem. By making this as-
sumption, we can do without a detailed description
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(partial differential equations) of the information
(waves) leaving the region of interest, and replace it
with a simple statement of when () and with what
effects () the information reenters our problem. This
very economical statement is obviously an oversim-
plification of processes acting in ENSO. A number of
objections easily come to mind: some degree of cou-
pling will occur over the whole basin; the eastern
boundary, whose presence we have glossed over in this
discussion, will play some role to cloud the distinction
between local and delayed effects; and nonlinear effects
may not fit as neatly as we have assumed into the local/
delayed description of the wave propagation. Still we
contend that (2) may be a useful idealization of the
essentials of a time scale selection in the ENSO prob-
lem, and may be of more general interest.

In coupled problems we are interested primarily in
what happens at the ocean-atmosphere interface. Any
other occurrences need to be described only insofar as
they affect the ocean surface (unless of course they are
the final object of our prediction). For the atmosphere,
with its short time scales, we can probably think of
information from the surface as being transmitted in-
stantaneously over the domain, But in the oceans, it
may often be useful to think of information as being
temporarily sequestered, so that it manifests itself with
a time delay. Under conditions akin to those presented
here, oscillatory solutions may arise.
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