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ABSTRACT

A new conceptual model for ENSO has been constructed based upon the positive feedback of tropical ocean–
atmosphere interaction proposed by Bjerknes as the growth mechanism and the recharge–discharge of the
equatorial heat content as the phase-transition mechanism suggested by Cane and Zebiak and by Wyrtki. This
model combines SST dynamics and ocean adjustment dynamics into a coupled basinwide recharge oscillator
that relies on the nonequilibrium between the zonal mean equatorial thermocline depth and wind stress. Over
a wide range of the relative coupling coefficient, this recharge oscillator can be either self-excited or stochastically
sustained. Its period is robust in the range of 3–5 years. This recharge oscillator model clearly depicts the slow
physics of ENSO and also embodies the delayed oscillator (Schopf and Suarez; Battisti and Hirst) without
requiring an explicit wave delay. It can also be viewed as a mixed SST–ocean dynamics oscillator due to the
fact that it arises from the merging of two uncoupled modes, a decaying SST mode and a basinwide ocean
adjustment mode, through the tropical ocean–atmosphere coupling. The basic characteristics of this recharge
oscillator, including the relationship between the equatorial western Pacific thermocline depth and the eastern
Pacific SST anomalies, are in agreement with those of ENSO variability in the observations and simulations
with the Zebiak–Cane model.

1. Introduction

Interaction between the tropical ocean and atmo-
sphere produces interannual climate variability domi-
nated by the El Niño–Southern Oscillation (ENSO) phe-
nomenon, which has been the object of much research
(e.g., Bjerknes 1969; Wyrtki 1975; Rasmusson and Car-
penter 1982; Cane and Zebiak 1985; Cane et al. 1986;
Graham and White 1988; Philander 1990; Barnett et al.
1991; Philander et al. 1992). Theory for the ENSO phe-
nomenon has approached a mature stage during the past
decade (Neelin et al. 1994). ENSO modeling has ad-
vanced to the point where predictions are being made
on a regular basis (Cane et al. 1986; Zebiak and Cane
1987, hereafter ZC; Barnett et al. 1988; Keppenne and
Ghil 1992; Latif et al. 1994; Ji et al. 1994).

Bjerknes (1969) first hypothesized that ENSO is a
result of ocean–atmosphere interaction in the tropical
Pacific from his analysis of the empirical relations of
El Niño and the Southern Oscillation. He recognized
that the equatorial SST zonal gradient drives the east-
erlies over the tropical Pacific. These easterlies in turn
create the cold SST over the eastern Pacific and thus
strengthen the SST gradient. It is this Bjerknes positive
feedback process of tropical ocean–atmosphere inter-
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action that sustains either a warm or a cold SST anom-
aly. Wyrtki (1975) realized that during El Niño the oce-
anic anomalies in sea-level data are basinwide and dy-
namical. He suggested that the buildup of sea level (an
indicator of heat content) over the western Pacific is
related to the strengthening of the trades, and the ac-
cumulated warm water flows eastward in the form of
Kelvin waves to give birth to an El Niño event. How-
ever, this Bjerknes–Wyrtki hypothesis did not explain
the salient cyclic nature of ENSO. It took about another
decade of research before Cane and Zebiak (1985) and
Wyrtki (1986) envisioned a new hypothesis (Cane
1992a):

An earlier version (Cane and Zebiak 1985; Cane et al.
1986) emphasized the recharging of the equatorial ‘‘res-
ervoir of warm water’’ as a necessary precondition for
the initiation of a warm event. On the basis of his analysis
of sea level data, Wyrtki (1986) developed a similar hy-
pothesis. The aftermath of a warm event leaves the ther-
mocline along the equator shallower than normal (i.e.,
equatorial heat content is low and SST is cold; this is
the La Niña phase). Over the next few years the equatorial
Kelvin waves allowed by linear equatorial ocean dynam-
ics can move enough of the warm water to the eastern
end of the equatorial Pacific to initiate the next event.

The combined BWCZ (short for Bjerknes–Wyrtki–
Cane–Zebiak) hypothesis indicated that ENSO is a nat-
ural basinwide oscillation of the tropical Pacific ocean–
atmosphere system. Both the positive feedback of the
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coupled interaction of the ocean–atmosphere system of
the tropical Pacific and the memory of the system in
the subsurface ocean dynamical adjustment are essential
for ENSO. The ZC model that incorporates these two
elements is the first and perhaps still among the most
successful coupled models in simulating, understanding,
and predicting ENSO.

The theoretical understanding gained over the past
decade is largely through mechanistic studies based on
simple coupled models, which often include shallow-
water or two-layer ocean models coupled to steady shal-
low-water-like atmospheric models with heavily para-
meterized physics (Lau 1981; Philander et al. 1984; An-
derson and McCreary 1985; Cane and Zebiak 1985;
Zebiak and Cane 1987; Hirst 1986, 1988; Battisti 1988;
Battisti and Hirst 1989, BH hereafter; Suarez and Schopf
1988; Schopf and Suarez 1988, SS hereafter; Yamagata
and Masumoto 1989; Wakata and Sarachik 1991; Neelin
1991; Jin and Neelin 1993a,b; Neelin and Jin 1993,
hereafter JN). The basic assumption underlying these
studies is that ENSO-like variability can be considered
as resulting from a coupled oscillatory instability of the
basic climatological state of the tropical ocean–atmo-
sphere system. Different conceptual models of coupled
unstable modes have been put forward to explain the
diverse results obtained in various coupled models. For
example, under the assumption that the SST anomaly
is in quasi-equilibrium with subsurface thermocline
fluctuation, Cane et al. (1990, CMZ hereafter) discov-
ered that the coupled process modifies the ocean basin
modes (Cane and Moore 1981) to form a standing un-
stable oscillatory mode, a coupled wave oscillator that
is strongly related to oceanic wave dynamics. In con-
trast, a coupled ‘‘SST mode’’ (Neelin 1991; JN; Hao et
al. 1993) that depends on the feedback of surface-layer
processes with quasi-equilibrium ocean dynamics is
found to be a good candidate to explain the propagating
interannual oscillations simulated in certain coupled
models (Neelin 1990; Meehl et al. 1990).

The detailed connections between these two seem-
ingly contrary idealizations were quantitatively mapped
out by JN using a stripped-down version of the ZC
model. It was found that the regimes of the unstable
ocean dynamics modes of CMZ and the coupled SST
modes of Neelin (1991) represent two extremes: the fast
SST limit and the fast wave limit. In the former case,
the timescale of SST change is much shorter than that
of the oceanic dynamics, and SST change is thus es-
sentially controlled by subsurface feedback processes.
In the latter case, the timescale of oceanic adjustment
is much shorter than that of SST, so that the subsurface
ocean dynamics is in quasiequilibrium with wind stress
forcing and SST change is dominated by surface layer
processes. It is made clear by JN that these two types
of coupled modes merge continuously across parameter
space. In particular, in the physically most relevant part
of parameter space, they are strongly mixed to form a
‘‘mixed’’ SST–subsurface ocean dynamics mode. From

this unifying framework, the diversity of interannual
behavior found in different models can be viewed in
terms of slight ‘‘distortions’’ in the mixed SST–sub-
surface ocean dynamics modes, arising from different
approximations of model physics.

The concise and toylike delayed oscillator (SS; BH)
model incorporates two elements: 1) the coupled pos-
itive feedback for SST anomalies over the central to
eastern Pacific through changes of the thermocline and
upwelling and 2) memory of subsurface ocean dynam-
ics. Because of the latter, the thermocline anomalies
consist of the contributions both from local wind stress
forcing and from a delayed signal from the western
boundary produced by the reflection of remotely gen-
erated Rossby waves. The delayed oscillator requires a
time delay due to the equatorial wave propagation and
a strong wave reflection at the western boundary. In
fact, it was shown by CMZ that the coupled wave os-
cillator at the fast SST limit can be approximated into
a BH delayed oscillator when the wave reflection is
ignored at the east boundary. This has led to an ENSO
paradigm with a focus on the equatorial wave propa-
gation instead of the recharge–discharge of equatorial
heat content suggested in the earlier BWCZ hypotheses.
The simple and popular delayed oscillator, although
challenged (Li and Clarke 1994) about the role of prop-
agation of the equatorial ocean waves, was argued to
be consistent with observation (Mantua and Battisti
1994) and the ENSO-like variability in the ZC model.
On the other hand, it is speculated by JN that the delayed
oscillator is an ad hoc approximation to the mixed SST–
ocean dynamics mode, which is the most relevant mode
to ENSO. However, a clear and simplified representation
of this mixed mode and demonstration of its close link-
age with the BWCZ hypothesis are yet to be established.

In Part I of this two-part paper, a simple prototype
model explicitly consistent with the BWCZ hypothesis
is shown to give a harmonic oscillator that is at the heart
of the mixed SST–ocean dynamics mode suggested by
JN. This oscillator can be systematically reduced from
a ZC-type model (Part II). In section 2, the conceptual
harmonic oscillator based on the BWCZ hypothesis for
ENSO is formulated and discussed. In section 3, the
excitation of the recharge oscillator is examined in lin-
early unstable and stable regimes with considerations of
the nonlinearity and stochastic forcing. Further discus-
sion of the recharge oscillator and a summary are given
in sections 4 and 5, respectively.

2. A conceptual model for the recharge oscillator

The thermocline depth of the equatorial ocean is one
of the main variables that needs to be considered for
understanding ENSO dynamics. On the ENSO time-
scale, the leading ocean dynamical balance is between
the pressure gradient force and wind stress over the
equatorial band, for instance, within a couple of oceanic
Rossby radii of deformation. In other words, the zonal
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pressure gradient force accompanying the thermocline
depth tilt along the equator is largely in a Sverdrup
balance with the equatorial wind stress force (e.g., Cane
and Sarachik 1981; Philander 1990). A numerical ocean
model forced with a slowly changing wind stress anom-
aly can be used to verify this quasi-equilibrium relation
(e.g., Schneider et al. 1995). For simplicity, one can
take the reduced gravity shallow-water model as a base
for the upper ocean dynamics. This quasibalance thus
leads to a simple relationship,

hE 5 hW 1 ,t̂ (2.1)

where hW denotes the thermocline depth anomaly in the
western Pacific, for instance, within one oceanic Rossby
radius of deformation from the equator; hE is the ther-
mocline depth anomaly in the equatorial eastern Pacific;
and is proportional to the zonally integrated windt̂
stress in this band. This relation approximately holds
for the anomalies associated with ENSO, since ENSO
related changes slowly in time relative to the timescalet̂
of the equatorial oceanic Kelvin waves and is roughly
centered at the equator with latitudinal variations on the
scale of the atmospheric Rossby radius. However, this
leading balance of forces only constrains the east–west
contrast of the thermocline depth. The absolute depth
at the western Pacific or the mean thermocline depth
over the equatorial band is not constrained by this bal-
ance. The mean thermocline depth depends on the mass
adjustment of the entire tropical Pacific ocean and may
not be in equilibrium with the slowly varying wind forc-
ing. In the nonequilibrium between the zonal mean ther-
mocline depth and the wind stress forcing resides the
memory of the subsurface ocean dynamics and makes
the fast wave limit approximation inappropriate for an
ENSO-like mode that relies on the subsurface ocean
memory (e.g., Cane 1992b).

There are two equivalent qualitative approaches to
this adjustment process. One is from the wave propa-
gation point of view. The ocean mass adjustment is
completed through the oceanic Kelvin and Rossby
waves, which propagate in opposite directions and are
forced by the basin boundaries to change into opposite
wave characteristics through reflections. The damping
effect due to the leakage of energy via the boundaries
and other damping processes allow this adjustment to
finally settle into a quasi-equilibrium in the equatorial
region. In this view, one of the two unknowns in Eq.
(2.1) can be related to a boundary condition that de-
termines wave reflections as shown in a number of the-
oretical studies (e.g., Cane and Sarachik 1981). The oth-
er approach is to consider that the equatorial wave prop-
agation process is relatively fast for establishing this
thermocline slope that extends to the off-equatorial re-
gion as a result of the broadness of the atmospheric
wind system. The Coriolis force becomes important off
the equatorial band, and therefore there will be Sverdrup
transport either pumping the mass in or out of the equa-
torial region depending on wind forcing, as hypothe-

sized by Cane and Zebiak (1985) and Wyrtki (1986).
Under linear shallow-water dynamics, this Sverdrup
transport is accomplished by the Rossby waves. The
zonally integrated effect of this Sverdrup transport of
mass or, equivalently, heat content (in the sense of shal-
low-water dynamics) will result in the deepening or
shoaling of the western Pacific thermocline depth (Wyrt-
ki 1986). Thus, although the thermocline tilt along the
equator is set up quickly to balance the equatorial wind
stress as expressed by (2.1), the thermocline depth of
the warm pool takes time to adjust to the zonal inte-
grated meridional transport, which is related to both the
wind stress and its curl off the equatorial band.

Using the second approach and assuming that the
adjustment timescale is much longer than that for a Kel-
vin wave crossing the basin, one can symbolically de-
scribe this adjustment process by the following equa-
tion:

dhW 5 2rh 2 F . (2.2)W tdt

This equation focuses on the thermocline depth changes
averaged over the western equatorial Pacific during the
basinwide adjustment because the tropical wind anom-
aly associated with ENSO is largely over the western
to central Pacific (Deser and Wallace 1990). The first
term on the right-hand side represents the ocean ad-
justment. It is simply characterized by a damping pro-
cess with a rate r that collectively represents the damp-
ing of the upper ocean system through mixing and the
equatorial energy loss to the boundary layer currents at
the east and west sides of the ocean basin. This will
become more clear in Part II of this paper where this
relation is derived from basic dynamical principles
through a number of simplifications. The wind forcing
Ft is related to the zonally integrated wind stress and
its curl. It represents the Sverdrup transport across the
basin. To a large extent Ft is also proportional to , thatt̂
is, F̂t 5 a , which approximately holds for the ENSO-t̂
related wind stress anomaly with a broad meridional
scale. One also expects that Ft is a weak forcing because
only a part of the wind stress forcing is involved in the
slow adjustment process, whereas the other part is in
the quasi-Sverdrup balance. A small r and a weak forc-
ing Ft are consistent in describing the slow basinwide
ocean adjustment process. The minus sign for the wind
forcing term comes from the fact that a westerly wind
stress anomaly will lead to a shallower thermocline over
the western Pacific, whereas a strengthened trade will
result in a buildup of the warm pool as suggested by
Wyrtki (1975, 1986). The Eq. (2.2) can be rewritten as

dhW 5 2rh 2 at̂. (2.3)Wdt

Equations (2.1) and (2.3) give a gross description of
the basinwide equatorial oceanic adjustment under
anomalous wind stress forcing of low frequencies (with
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timescales larger than the basin crossing time of oceanic
Kelvin waves). Equation (2.3) differs from the delayed
oscillator model (BH) in description of slow ocean dy-
namics. In the latter, hW is simply proportional to 2 (tt̂
2 h), which results from the reflection of forced equa-
torial oceanic Rossby waves with a delay h (the time
for Rossby wave propagating from the center of the
forced region to the western boundary). This wave-delay
description introduces an infinite number of degrees of
freedom (representing different spatial scales of Rossby
waves), yet suffers a degeneracy at [ 0 and fails tot̂
properly describe the ocean adjustment dynamics. In
(2.3), the explicit wave-propagating process is omitted,
and the collective role of equatorial waves in achieving
the quasi-equilibrium adjustment dynamics is accounted
in the recovery timescale 1/r. The basinwide slow ad-
justment dynamics is simply characterized by one de-
gree of freedom and the degeneracy in the wave-delay
description is avoided. Moreover, Eqs. (2.1) and (2.3)
generally represent the quasi-balance between the ther-
mocline tilt and wind stress and the slow dynamic re-
newal of the warm pool heat content. The whole bas-
inwide distribution of heat content, residing in the mem-
ory of subsurface ocean dynamics, is thus explicitly
taken into consideration. The slow buildup of the west-
ern Pacific warm pool in terms of thermocline depth,
or the recharging of the entire equatorial heat content,
takes place during the phase of strengthened trade wind
( , 0), whereas a weakened trade results in the gradualt̂
discharging of the western Pacific warm pool and the
reducing of the entire equatorial thermocline depth.
Thus, (2.3) gives a simple and clear description of the
equatorial heat content recharge–discharge process,
which is the essential phase-transition mechanism of
ENSO as suggested by Cane and Zebiak (1985) and
Wyrtki (1986).

The variation of SST during ENSO is largely confined
within the central to eastern equatorial Pacific. The SST
anomaly in this region strongly depends on the local
thermocline depth that determines the temperature of
the subsurface water, because this water is pumped up
into the surface layer to control the SST by the cli-
matological upwelling associated with the climatolog-
ical trade wind along the equator. Changes in the trade
wind intensity in response to the SST anomaly may also
further reinforce the SST anomaly by altering upwelling
and horizontal advection. The mean climatological up-
welling and heat exchange between the atmosphere and
ocean tend to damp out the SST anomaly. Although the
details of all these processes can be complicated (e.g.,
ZC, BH, JN), they can be roughly depicted in a simple
equation for the SST anomaly TE, averaged over the
central to eastern equatorial Pacific:

dTE
5 2cT 1 gh 1 d t . (2.4)E E s Edt

The first term on the right-hand side is the relaxation

of SST anomaly toward climatology (or zero anomaly)
caused by the above-mentioned damping processes with
a collective damping rate c. The second and third terms
are the thermocline upwelling and advective feedback
processes, respectively; tE is wind stress averaged over
the domain where the SST anomaly occurs; g and ds

are thermocline and Ekman pumping feedback coeffi-
cients.

Atmospheric response to a warm SST anomaly of the
central to eastern Pacific is a westerly wind over the
central to western equatorial Pacific and an easterly
anomaly to the east of the SST anomaly. There is an
overall westerly (easterly) anomaly for a positive (neg-
ative) SST anomaly averaged over the entire basin of
the equatorial band, but a much weaker westerly (east-
erly) anomaly averaged over the eastern half of the basin
(e.g., Deser and Wallace 1990). This allows the simple
approximate relations of the wind stress and SST anom-
alies:

5 bTE, E 5 b9TE,t̂ t (2.5)

where b and b9 are coupling coefficients.
Combining the Eqs. (2.1)–(2.5), one obtains a simple

linear coupled system with both the subsurface ocean-
adjustment dynamics and the surface-layer SST dynam-
ics:

dhW 5 2rh 2 abTW Edt

dTE 5 RT 1 gh , (2.6)E Wdt

where R 5 gb 1 dsb9 2 c. Clearly, R collectively de-
scribes the Bjerknes positive feedback hypothesis of the
tropical ocean–atmospheric interaction and leads to in-
stability when growth rate (R 2 r)/2 .0, while abg,
representing the recharging mechanism, allows oscil-
lation when frequency v 5 abg 2 (r 1 R)2/4 is real.Ï
Thus, this system combines the mechanisms of the
BWCZ hypotheses to describe a coupled recharge os-
cillator. The growth rate of the oscillation depends main-
ly on the term gb, which represents the thermocline
feedback, because the Ekman upwelling feedback pa-
rameter dsb9 is relatively small due to the weak local
wind stress averaged over the eastern basin. Thus this
term will be ignored for simplicity throughout the paper
by setting dsb9 5 0 or R 5 gb 2 c.

The physics of this simple recharge oscillator of (2.6)
is clear as schematically illustrated in Fig. 1. An initial
positive SST anomaly induces a westerly wind forcing
over the central to western Pacific. The anomalous slope
of the equatorial thermocline is promptly set up to be
proportional to the wind stress and thus to the SST
anomaly. The deepening of the thermocline in the east-
ern Pacific results in a positive feedback process that
amplifies this anomaly and brings the oscillation to a
mature phase as shown in Fig. 1a (the mechanisms of
sustaining a finite amplitude of the recharge oscillation
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FIG. 1. Schematic panels of the four phases of the recharge oscil-
lation: (a) the warm phase, (b) the warm to cold transition phase, (c)
the cold phase, and (d) the cold to warm transition phase. The rect-
angular box represents the equatorial Pacific basin, the elliptical circle
represents the SST anomaly, the thin and filled arrows represent wind
stress anomaly associated with the SST anomaly, and the thick un-
filled arrows represent the recharge/discharge of equatorial heat con-
tent. Each panel also shows the distribution of the thermocline depth
anomaly (h) along the equator.

will be discussed in section 3). At the same time, the
wind stress also gradually reduces thermocline depth in
the western Pacific and leads to a negative zonal mean
thermocline depth across the Pacific as the result of the
divergence of zonal integrated Sverdrup transport. This
process can be viewed as the discharge of the zonal
mean equatorial heat content because thermocline depth
is highly related to the dynamical part of the upper ocean
heat content (e.g., Zebiak 1989). This discharge also
gradually reduces the thermocline depth in the eastern
Pacific and eventually leads to a cooling trend for the
SST anomaly when the warming due to the still positive
thermocline depth anomaly in the eastern Pacific is bal-
anced off by the damping process of the SST. Thus the
warm phase evolves to the transition phase as shown in
Fig. 1b. At this time, the SST anomaly cools to zero.
The east–west thermocline tilt diminishes because it is
always in a quasi-equilibrium balance with the zonal
wind stress, which has disappeared following the SST
anomaly. However, the entire equatorial Pacific ther-
mocline depth and thus the eastern Pacific thermocline
depth is anomalously shallow because of the discharge
of the equatorial heat content during the warm phase.
This zonal mean thermocline is not in quasi-equilibrium
with the wind stress and has already started to increase
as the result of the ocean adjustment after the diminished
wind stress. It is this anomalous shallow thermocline
depth at the transition that allows anomalous cold water
to be pumped into the surface layer by climatological
upwelling; the SST anomaly then slides into a negative
phase. Once the SST anomaly becomes negative, the
cooling trend proceeds because the negative SST anom-
aly will be further amplified through the positive ther-
mocline feedback. That is, the enhanced trades, in re-

sponse to the cold SST anomaly, deepen the thermocline
depth in the western Pacific and lift the thermocline
depth up in the east. Thus the oscillation develops into
its mature cold phase as shown in Fig. 1c. At the same
time, the zonal mean thermocline depth over the equa-
torial Pacific is deepening, as a result of the recharging
of the equatorial heat content due to the strengthened
trades. This reverses the cooling trend after the mature
cold phase and brings it to another transition phase as
shown in Fig. 1d. When the cold SST anomaly reduces
to zero, the positive zonal mean thermocline depth gen-
erated by the recharging process will lead the SST
anomaly evolving back to another warm phase.

During the cycle, a positive western Pacific ther-
mocline depth anomaly leads to a warm SST anomaly
in the eastern Pacific. This can also be viewed as the
thermocline depth anomaly of the western Pacific being
negatively proportional to the SST anomaly of the east-
ern Pacific with a time lag. Thus, the nonequilibrium
between zonal mean thermocline depth and the wind
stress forcing, owing to the slow basinwide ocean ad-
justment, serves as the memory of the coupled system.
The discharge of the equatorial heat content in the warm
phase and recharge at the cold phase serve as the phase-
transition mechanism from a warm event to a cold event
and vice versa. This conceptual basinwide coupled re-
charge oscillator model is, perhaps, the simplest rep-
resentation of the entire BWCZ hypothesis.

To facilitate some quantitative analysis, one needs to
estimate the values of the parameters in the coupled
system (2.6). The collective damping rate c is dominated
by the mean climatological upwelling, which yields a
typical damping timescale of about 2 months (e.g., JN);
g is related to both the mean climatological upwelling
and the sensitivity of subsurface ocean temperature to
the thermocline depth. It is chosen to give an SST
change rate of 1.58C over 2 months (which is the up-
welling timescale) per 10 m of thermocline depth anom-
aly over the eastern Pacific. This value of g is close to
that parameterized in the ZC model. The collective
damping rate r in the ocean adjustment includes not
only the weak linear damping [about (2.5 years)21 in
ZC model], but more importantly, also the damping ef-
fect due to the loss of energy to the boundary currents
of the west and east boundary layers (see Part II for
details). The latter could lead to a much shorter damping
timescale. Parameter r is set as (8 months)21, which still
gives a damping timescale much longer than the typical
2-month-crossing timescale of the first baroclinic Kelvin
wave. If one assumes that for a given steady wind stress
forcing, the zonal mean thermocline anomaly of this
linear system is about zero at the equilibrium state, that
is, hE 1 hW 5 0, then from (2.1) and (2.3), one finds
that a shall be about half of r. Finally, parameter b is
a measure of the thermocline slope, which is in balance
with the zonal wind stress produced by the SST anom-
aly. It is chosen to give 50 m of east–west thermocline
depth difference per 18C of the SST anomaly. This is
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FIG. 2. Dependence of the eigenvalues on the relative coupling
coefficient. The curves with dots are for the growth rates, and the
curve with circles is for the frequency when the real modes merge
as a complex mode (corresponding periods in years equal p/3 divided
by the frequencies).

a high-end estimation of parameter b, whereas for a
typical ENSO event the value may be somewhat smaller.
For the convenience of discussion, a so-called relative
coupling coefficient m is introduced as

b 5 b0m, (2.7)

where b0 is the high-end estimation of b, and m is re-
ferred to as a relative coupling coefficient that will be
varied in the range 0 to 1.5 embracing the uncoupled
and strongly coupled cases. System (2.6) is hereafter
nondimensionalized by scales of [h] 5 150 m, [T] 57.5
K, and [t] 5 2 months for anomalous thermocline depth,
SST, and the time variable, respectively. Accordingly,
parameters c, r, and a are scaled by [t]21, and parameters
g and b0 by [h][t]/[T] and [T]/[h]. Their nondimensional
values are c 5 1, g 5 0.75, r 5 0.25, a 5 0.125, and
b0 5 2.5.

The detailed analyses of the model sensitivity to this
set of parameters will be elaborated in Part II of the
paper. With the values of the parameters given above,
the dependence of the eigen modes of the coupled sys-
tem (2.6) on the relative coupling coefficient can be
analytically solved as

15 2
s 5 2 2 m6 i Ï(m 2 m )(m 2 m) ,1,2 1 21 216 3

m 5 (8 2 Ï28)/15, m 5 (8 1 Ï28)/15, (2.8)1 2

and the results are shown in Fig. 2. When the relative
coupling coefficient m is weak (m , m1), the system has
two decaying modes that can be identified at m 5 0 as
the uncoupled SST model and the ocean-adjustment
mode respectively. These two modes eventually merge
into an oscillatory mode as the coupling coefficient in-
creases to m . m1. When the coupling is further in-
creased to m . m2, the oscillator breaks down to give
two modes. One is a purely growing mode because the
strong coupling through Bjerknes feedback results in a

growth rate being too fast to be linearly checked by the
slow ocean adjustment process. The other is a real mode
whose growth rate decreases rapidly and becomes neg-
ative when m is larger than m2. As is shown in Fig. 2,
for a wide range of moderate coupling between (m1, m2),
the system does support an oscillatory mode with a
period mostly in the range of 3–5 years. This oscillatory
mode is supercritical if m . mc 5 2/3 and subcritical
if the coupling coefficient is smaller than the critical
value mc. As will be shown in section 3, in the super-
critical oscillatory regime, adding nonlinearity to the
coupled system will limit the linear growth to a self-
excited coupled oscillation. In the subcritical oscillatory
regime, a coupled oscillatory solution can also be sus-
tained when sources of stochastic forcing are taken into
consideration.

Before going into the nonlinear solutions or stochas-
tically forced solutions, one can look at the linear neutral
oscillation at the critical coupling. When m 5 2/3, the
growth rate in (2.8) is zero and the critical frequency
is vc 5 3/32, and (2.6) gives a perfect harmonic os-Ï
cillation:

1
0 0 0T 5 T cos(v t) 1 (rT 1 gh )sin(v t),E E c E W cvc

1
0 0 0h 5 h cos(v t) 2 (rh 1 ab m T )sin(v t)W W c W 0 c E cvc

ab m0 c5 2 T (t 2 h), h 5 arctan(v /r)/v .E c c
2 2Ïv 1 rc

(2.9)

The amplitude of the oscillation depends only on the
initial conditions of the eastern Pacific SST and the0TE

western Pacific thermocline depth . The western Pa-0hW

cific thermocline depth anomaly in the solution is also
written to be negatively proportional to the SST with a
time lag h.

An example of the solution (2.9) is shown in Fig. 3
with a period around 3.4 years and a roughly 6 month
time lag between the positive maximum of the SST in
the eastern Pacific and the negative maximum of the
thermocline depth at the western Pacific. The trajectory
of the solution on the phase plane of (hW, TE) exhibits
an elliptical-shaped orbit centered at the origin and ro-
tating clockwise. The ellipticity and rotating direction
of the solution along the orbit heavily depend on the
lag. When this lag is a quarter of the period, the shape
of the limit cycle is a perfect circle. A smaller lag makes
the orbit become more elliptical. If the lag is negative
and smaller than a quarter of the period, the rotation
direction reverses. From the BWCZ hypothesis, only a
positive lag h smaller than a quarter of the oscillation
period is possible for the harmonic oscillation of (2.6),
simply because both r and ab are positive to characterize
the damping effect in the ocean adjustment and the
buildup of the western Pacific thermocline for a
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FIG. 3. (a) The time series for the SST (in 8C, solid line) and
thermocline depth in the western Pacific (in 10 m, dashed line) and
(b) their corresponding trajectory plot of a solution from Eq. (2.9)
with initial conditions of SST at 1.1258C and thermocline depth in
the western Pacific at zero.

FIG. 4. The time series of the observed sea level anomaly (in
centimeters, dashed line) over the western Pacific averaged from 108N
to 108S and from 1208E to the date line, and NINO3 index (solid
line) from 1980 to 1990 (a) and the corresponding trajectory plot (b).
In the plot (b), A and B denote the starting and ending points of the
trajectory. A 13-month running mean is applied twice to the monthly
data.

strengthening trade. In other words, the BWCZ hy-
pothesis predicts this feature of an oscillation for ENSO
well as shown in Fig. 3. The solution of recharge os-
cillator qualitatively agrees with the features seen in Fig.
4 in terms of the orientation and rotation direction of
the trajectory on the phase plane of the observed equa-
torial sea level anomaly and the observed anomalous
NINO3 index (SST averaged over an equatorial band
of the eastern Pacific) during the period 1979–1991.
Similar features can also be found in a typical solution
from the standard ZC model in an active ENSO episode
as shown in Fig. 5. Unlike the results in Fig. 3a, the
observed trajectory and that of the ZC model solution
do not precisely follow closed cycles centered at the
origin of the phase plane. These discrepancies come
from the nonlinearity and irregularity of ENSO vari-
ability in the observation and the ZC model, which are
not captured by the harmonic oscillation of the concep-
tual model. Nevertheless, the fundamental features of
ENSO variability, the ellipticity of the phase space tra-

jectory, the rotation direction, and the periodicity are
well depicted by the simple linear dynamics. The qual-
itative agreement in all plots indicates the relevance of
the conceptual model.

3. Excitation of the recharge oscillator

a. Self-excitation

When the coupling intensity is sufficiently strong (m
. 2/3), the linear growth rate in (2.8) becomes positive,
and system (2.6) gives an unstable oscillatory mode and
thus a Hopf bifurcation from the climate state about
which the model has been linearized. Nonlinear pro-
cesses will limit the linear growth and lead to a finite
amplitude oscillation. As shown by Battisti and Hirst
(1989), the dominant nonlinearity in the ZC model is
in the thermocline feedback, that is, a very shallow or
very deep thermocline will not linearly increase the
cooling or warming because of the nonlinear depen-
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FIG. 5. The time series of the thermocline depth anomaly (in 10
m, dashed line) over the western Pacific averaged from 58N to 58S
and from 1208E to the date line and the NINO3 index (solid) from
a standard ZC model solution (a) and the corresponding trajectory
plot (b). The same smoothing is applied as in Fig. 4 and the time
mean values of the solution are subtracted.

dence of the SST on the thermocline depth in subsurface
temperature parameterization. Such a nonlinear depen-
dence reflects the nonlinear vertical distribution of the
temperature in the tropical upper ocean. One can consider
such a nonlinear dependence of subsurface temperature
on the thermocline depth by adding a term 2en into3hE

the SST equation of (2.6) (e.g., BH). Using (2.1), one
gets a simple nonlinear model that is valid in the neigh-
borhood of the climatological state about which the
model has been linearized:

dTE 35 RT 1 gh 2 e (h 1 bT )E W n W Edt

dhW 5 2rh 2 abT . (3.1)W Edt

Near the Hopf bifurcation point, one can assume m 5
mc 1 D with 0 , D K 1. This D represents a small
departure from the critical point mc. Then the finite am-
plitude oscillation of system (3.1) can be approximately

solved using a perturbation method such as the one out-
lined in the appendix or some other methods (e.g., Iooss
and Joseph 1990). The final solution can be expressed as

T 5 ÏDBsin(vt),W

ab m0 ch 5 2 T (t 2 h ), (3.2)W E v
2 2Ï(v 1 r )c

where

V
v 5 v 1 VD, h 5 h 1 1 D , (3.3)c v @1 2vc

and h is the same as defined in (2.9). Clearly, when the
system is supercritical (D . 0), the solution is also a
perfect harmonic oscillation and very similar to the lin-
ear neutral solution (2.9). However, the amplitude does
not depend on initial conditions but on the supercriti-
cality because the solution is now a limit cycle. In other
words, the recharge oscillator of (3.1) is now self-ex-
cited. The period is weakly controlled by the super-
criticality and largely determined by vc, the frequency
at the bifurcation point. The frequency correction factor
V and the amplitude factor B are functions of en and
other model parameters, and the details can be found
in the appendix. Because the correction on the frequency
is reduced by the nonlinearity as discussed in the ap-
pendix, one can virtually ignore the small frequency
correction. The time lag hv between the SST and ther-
mocline depth thus approximately equals h. This limit
cycle solution then becomes the same as the linear so-
lution (2.9) in terms of characteristics of the orbit in the
phase space, time evolution of the SST, and thermocline
depth as shown in Fig. 3 after a simple rescaling of the
amplitude. Thus, in the neighborhood of the Hopf bi-
furcation, nonlinearity does not alter basic dynamics of
the recharge oscillator as described by (2.6).

If one pushes the coupling parameter to an extremely
strong range, for instance m . mp 5 16/15, system (3.1)
will have two steady-state solutions in addition to the
limit cycle solution of the nonlinear recharge oscillator,
as shown in the appendix. These two steady-state so-
lutions, however, are unstable until m . 19/15. When
m . 19/15, they become stable states and the nonlinear
recharge oscillator disappears. Thus, in this extreme re-
gime, the coupled model settles to either a warm state
or a cold state. These new states are far away from the
climatology state about which the anomaly coupled
model is constructed. They often represent artifacts of
anomaly coupled models and thus the danger of the
so-called flux corrections implied in these models (Nee-
lin and Dijkstra 1995). However, the simple model (3.1)
favors the Hopf bifurcation as the first bifurcation. The
simple nonlinearity actually further extends the oscil-
latory regime far beyond the range for linear oscillations
to avoid the danger of setting the model to a permanent
cold or warm state in the relevant range of the relative
coupling coefficient. The detailed form of nonlinearity
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crucially determines the bifurcation structure beyond the
neighborhood of the first Hopf bifurcation. Thus the
bifurcation diagram shown in the appendix for (3.1) may
be significantly altered with the inclusion of advective
nonlinearity in the SST and ocean dynamics and other
nonlinear processes, for instance, in the atmospheric re-
sponses to SST anomalies. Nevertheless, the stable
steady-state solutions tend to appear far away from the
realistic parameter regime. This is consistent with the
fact that anomaly coupled models in ENSO modeling
are successful in simulating ENSO-like interannual vari-
ability in the realistic parameter range without facing
the great danger of being trapped into a spurious per-
manent warm or cold state.

b. Stochastic excitation

When the coupling intensity is not sufficiently strong
(i.e., m , 2/3), the linear solution of (2.6) decays be-
cause the growth rate in (2.8) is negative. In this case
extending (2.6) to the nonlinear system (3.1) does not
help to sustain the oscillation of the system. However,
the recharge oscillator still can be excited by stochastic
forcing. The stochastic excitation of a decaying coupled
oscillator has been suggested as a scenario for ENSO
by a number of authors (McWilliams and Gent 1978;
Lau 1985). Viewing the ENSO as episodic, Wyrtki
(1986) also proposed this scenario in conjunction with
the recharge mechanism for ENSO. More recently, Pen-
land and Sardeshmukh (1995) further argued in favor
of this scenario based on the inverse modeling.

There are abundant transient atmospheric distur-
bances of much shorter decorrelation timescales than
the ENSO timescale. These transient disturbances can
exert forcing on the coupled system through wind stress
and heat flux. They can be conceptually considered as
sources of noise agitation to the slow ENSO dynamical

systems (2.6) and (3.1). Thus the linear conceptual mod-
el (2.6) can be extended as follows:

dhW 5 2rh 2 abT 2 ajW E 1dt

dTE 5 RT 1 gh 1 gj 1 j , (3.4)E W 1 2dt

where j1 and j2 represent the random wind stress forcing
added to in equations (2.1) and (2.3) and randomt̂
heating added into equation (2.4), respectively. For the
validity of the quasi-Sverdrup balance and slow ad-
justment dynamics described in (2.1) and (2.3), j1

should not include high-frequency variability (with
timescale shorter than the basin crossing time of oceanic
Kelvin waves). For mathematical simplicity, j1 and j2

are assumed as two independent sources of white noise
forcing with ^jk(t 1 s), jj(t)& 5 d(s)dk,j (^ & denotes2sj

the ensemble mean) and , as their variances for2 2s s1 2

mathematical simplicity. The strong dynamical filtering
effect of coupled system (3.4) to high-frequency forcing
makes the high-frequency part in j1 have little impact
on the response spectra of the system (3.4).

With the system in the subcritical regime m , mc,
(3.4) describes the damped recharge oscillator with the
stochastic excitation, and the solutions are bounded with
finite variance. Using the Fourier transform pair

`

ivtx(t) 5 x̃(v)e dv,E
2`

`1
2ivtx̃(v) 5 x(t)e dt, (3.5)E2p

2`

one can obtain the ensemble-averaged power spectra
and the cross spectrum of the SST and thermocline depth
of the system as follows:

2 2 2 2 2 2 21 s (r 1 v ) 1 s g ((r 2 a) 1 v ); 2 12^zT (v)z & 5 ,E 2 2 2 2 24p (v 2 gab 1 rR) 1 (R 2 r) v

2 2 2 2 2 2 21 s a (c 1 v ) 1 a b s; 1 22^zh (v)z & 5 ,W 2 2 2 2 24p (v 2 gab 1 rR) 1 (R 2 r) v

2 21 s ga(c 2 iv)(r 2 a 1 iv) 1 abs (r 1 iv); ; 1 2^T (v)h *(v)& 5 2 , (3.6)E W 2 2 2 2 24p (v 2 gab 1 rR) 1 (R 2 r) v

where the asterisk denotes the complex conjugate.
The spectra of the SST and thermocline depth exhibit

strong peaks near the eigen frequency (v 5 27/16)Ï
of (2.6) for the slightly damped case under the stochastic
forcing in heating (Fig. 6a). In the more damped case,
the peaks are much less evident and of much less am-
plitude (Fig. 6b). In the nonoscillatory regime these

peaks disappear. The results under the stochastic wind
forcing are very similar to those under the stochastic
heating forcing (not shown). Integrating Eq. (3.4) fol-
lowing a standard numerical method (e.g., Penland and
Matrosova 1994) with a small time step (6 h) to ensure
a sufficient sample interval on the noise, one can obtain
simulated realizations of SST and thermocline depth as
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FIG. 6. The analytical power spectra of the SST (solid curve) and thermocline depth at the western Pacific (dashed curve) with s2 5 2/15
(corresponding to a heating rate of 18C/month) and s1 5 0 for (a) m 5 0.6 and (b) m 5 0.4.

FIG. 7. (a) The time series for the monthly mean SST (in 8C, solid line) and thermocline
depth at the western Pacific (in 10 m, dashed line) of the last 100 years from 500-year
simulations, for the case in Fig. 6a; (b) for the case in Fig. 6b.

shown in Fig. 7. Clearly, under the same magnitude of
forcing, the recharge oscillator can be vigorously ex-
cited in the slightly damped case, whereas in the more
heavily damped case, although still being excited, the
oscillation is less coherent with a much weaker ampli-
tude. These simulated realizations are typical because
the spectra shown in Fig. 6 can be also approached by
taking an ensemble average of the power spectra cal-
culated from the simulated finite time realizations with
a standard Fourier transform method if the number in
the ensemble average is sufficiently large (over 100 sim-
ulations, not shown). These simulated evolutions of SST

and thermocline depth are again similar to the result
shown in Fig. 3a and the observation as shown in Fig.
4, particularly when the time series are smoothed and
plotted in the same manner (not shown).

Inverse Fourier transforms of the spectra in (3.6) give
the lagged autocorrelations of SST and thermocline
depth, ^TE(t 1 s), TE(t)& and ^hW(t), hW (t 1 s)& (s denotes
the lag), and their lagged cross correlation, ^TE(t), hW(t
1 s)&. They can be analytically obtained from residue
calculus and the results under stochastic heating are
shown in Fig. 8. The autocorrelations decay with the
lag time on the timescale of the negative growth rate of
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FIG. 8. The analytical normalized autocorrelations of the SST (solid curve) and thermocline depth at the western Pacific (dashed curve)
and their cross-correlation (dash–dot curve) with s1 5 0 and s2 ± 0 (normalized correlations are independent of values of s2 when s1 5
0). (a) m 5 0.6, (b) m 5 0.4.

FIG. 9. The same as in Fig. 8 except s2 5 0 and s1 ± 0 (normalized
correlations are independent of values of s1 when s2 5 0) and m 5
0.5.

the linear oscillator. The lag interval between the first
and second zeros of autocorrelation, which can be most
clearly identified in the slightly damped case in Fig. 8a,
corresponds to a half of the period inferred from the
eigen frequency of the linear damped oscillator. The
cross correlation indicates the phase relation between
the thermocline depth and SST. For the cases shown in
Figs. 8a and 8b, the thermocline depth at the western
Pacific is negatively correlated to the SST with a time
delay of about 4–5 months, slightly shorter than 6

months of deterministic oscillations of (2.9) and (3.2).
Under stochastic wind stress forcing, this lag is shorter,
only about 3 months in the case of m 5 0.5 as shown
in Fig. 9, and about 4 and 2 months in the cases of
m 5 0.4 and 0.6 (not shown), respectively. Thus, sto-
chastic forcing may play some role in shaping the en-
semble average phase relation between the thermocline
depth anomaly of the western Pacific and the SST anom-
aly in the eastern Pacific.

Although an ensemble of large size is needed to
achieve the analytical spectra (3.6) through numerical
simulations, nearly identical results of autocorrelations
and cross correlation shown in Fig. 8 can be accurately
calculated using the time series as shown in Fig. 7. This
is because the autocorrelations and cross correlation are
integrated quantities of the spectra and thus are robust.
For the comparison with the observation, the autocor-
relations and cross correlation of the NINO3 index and
the sea level averaged at two islands, Truk and Pago
Pago, where there are long records, are shown in Fig.
10. There are some differences between the results in
Fig. 10 and in Figs. 8 and 9; for instance, the period
exhibited in the autocorrelations of Fig. 10 is about 4
years, only about a half year longer than that in Figs.
8 and 9. The time delay indicated in the cross correlation
in Fig. 10 is about 2 months, which is slightly shorter
than that in Figs. 8 and 9. Although the results in Fig.
10 are subject to some error due to the short record of
the dataset, they agree well with those in Figs. 8 and
9.

The analytical solutions of the spectra, autocorrela-
tions, and cross correlations cannot be obtained in the
supercritical regime where nonlinearity has to be taken
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FIG. 10. Normalized autocorrelations of the monthly mean NINO3,
Truk and Pago Pago average sea level, and their cross correlation
from the years 1957 to 1992.

FIG. 11. (a) The same as Fig. 7a except for a numerical simulation of the nonlinear model
(3.1) with en 5 3 and m 5 0.7. (b) Normalized auto- and cross-correlations calculated from
the result in (a).

into consideration for a bounded solution with the sto-
chastic forcing. However, the same numerical integra-
tion method can be applied to obtain the numerical sim-
ulations and a typical solution is shown in Fig. 11a.
This nonlinear limit cycle solution perturbed by the sto-
chastic forcing is quite similar to the weakly damped
linear oscillation shown in Fig. 7a under the same sto-
chastic agitation. In fact, for this particular case, the
autocorrelations and cross correlation (Fig. 11b) cal-
culated from the time series in Fig. 11a are almost iden-
tical to those in Fig. 8a. It should be pointed out that
the decay rate of the autocorrelations of the perturbed
limit cycle solution by a stochastic forcing depends on
the nonlinearity factor en. The smaller en is, the slower
the autocorrelations decay with the lag time, and the
more regular the oscillatory solutions of the system be-
come. Thus stochastic forcing works as a source of dis-
sipation in the nonlinear model, and the dissipation rate
depends upon both the amplitude of variance of the
stochastic forcing and the degree of the nonlinearity of
the system. The nonlinear factor used in Fig. 11 is close
to the degree of the nonlinearity in a ZC-type model
(e.g., BH). The similarity of the autocorrelations from
the result in Fig. 11b to that in Fig. 8a illustrates the
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difficulty of distinguishing two views: the view of
ENSO as a limit cycle perturbed by noise and the view
of ENSO as a decaying oscillator sustained by noise.
However, with the consideration of both the noise ex-
citation and self-excitation, the basic BWCZ mechanism
gives rise to the recharge oscillator in a wide parameter
range that embraces the possible realistic values of the
coupling coefficient. Although whether ENSO is actu-
ally self-excited or sustained by noise will be difficult
to determine from the short records, the salient low-
frequency cyclic nature of the ENSO can be explained
by the coupled basinwide recharge oscillator of the trop-
ical ocean–atmosphere system.

4. Discussion

a. Zonal mean thermocline depth and recharge
oscillator

The zonal mean equatorial thermocline depth is of
essential importance in forming the coupled recharge
oscillator. The strong dependence of the ENSO-like os-
cillation on the zonal mean equatorial heat content was
first discovered by Zebiak and Cane (1987) in their nu-
merical experiments with the ZC model. If the zonal
mean thermocline depth in their coupled simulation is
artificially removed in the calculation of SST change,
the interannual variability in the model will completely
disappear. Artificially reducing it by half and doubling
it will result in significant changes in the characteristics
of the interannual oscillations of the model. They found
that the periods of the ENSOlike oscillation changed
from about 4 years to about 5–6 years and about 2 years,
respectively, for these two cases.

These sensitivity experiments can be analyzed with
the conceptual coupled model (2.6) to elucidate the role
of the zonal mean thermocline depth in the formation
of the recharge oscillator. With (2.1), (2.5), and (2.7),
the zonal mean thermocline depth can be expressed as

5 (hE 1 hW)/2 5 hW 1 b0mTE/2.ĥ (4.1)

Following the experiments conducted by ZC, one re-
places in the SST equation, and then theˆh by h 2 lhE E

modified coupled system (2.6) becomes

dhW 5 2rh 2 abT ,W Edt

dTE 5 (R 2 gb ml/2)T 1 g(1 2 l)h . (4.2)0 E Wdt

If l 5 1, the zonal mean thermocline depth is removed
in the calculation of thermocline feedback to SST, and
the SST equation becomes decoupled from the ocean
dynamics equation. The recharge oscillator is complete-
ly destroyed. Instead, the system has a decaying ocean
adjustment mode and a coupled nonoscillatory SST
mode. If the coupling is sufficiently strong, the latter
will become an unstable mode. When the nonlinearity

is included, this unstable mode leads to new steady-state
solutions. If l 5 1/2, half of the zonal mean thermocline
depth is artificially removed. In this case, ocean ad-
justment dynamics and SST dynamics are still coupled.
The critical coupling coefficient is at mc 5 8/9, and the
frequency at this coupling coefficient is vc 5 2/3 3/Ï
32 for the otherwise same parameter choice as for the
normal case (l 5 0). Comparing this with vc 5 3/Ï
32 at mc 5 2/3 for the normal case, there is indeed an
increase of period of about 50% from about 3.4 years
to about 5 years, corresponding to both frequencies at
different critical coupling coefficients. Similarly, if one
artificially doubles the zonal mean thermocline depth
by setting l 5 21, the critical coupling coefficient will
be mc 5 4/9 and corresponding frequency will be vc 5

3/32 14/9, which gives a period shorter than thatÏ Ï
of the normal case. As is shown in the appendix, the
frequencies of nonlinear oscillations in the supercritical
regime tend to be held close to the value at critical
coupling. Thus this analysis is grossly in agreement with
the results of the ZC experiments with a fixed coupling
coefficient. Moreover, it clearly demonstrates the im-
portance of the equatorial zonal mean heat content or
zonal mean thermocline depth in the formation of the
recharge oscillator.

b. Recharge oscillator and delayed oscillator

It will be shown in Part II that the BH delayed os-
cillator and the conceptual recharge oscillator are dif-
ferent approximations to a slow coupled mode of the
tropical ocean–atmosphere system. The main difference,
however, is in the emphases on the phase transition
mechanisms. The delayed oscillator requires an explicit
time delay associated with the equatorial wave propa-
gation and a strong western boundary wave reflection.
Because the forced Rossby and Kelvin waves have op-
posite signs in their associated thermocline depth anom-
aly fields and the boundary reflection does not alter the
signs in these fields, the locally forced Kelvin wave and
the Kelvin wave remotely generated from the western
boundary reflection of the forced Rossby wave have
different signs in their associated thermocline depth
anomaly fields. The contributions from these two parts
to the thermocline depth in the equatorial eastern Pacific
are both related to the local wind forcing. The reflected
part has a time delay owing to the time taken for the
Rossby wave to propagate from its forcing region to the
western boundary and the reflected Kelvin wave to prop-
agate from the western boundary to the central and east-
ern Pacific. The reflected Kelvin waves overtake at some
later time the forced Kelvin waves in the eastern Pacific,
which turns the thermocline depth associated with the
forced Kelvin wave around. It is the western boundary
reflection that accomplishes the phase transition in the
delayed oscillator.

In the recharge oscillator model, the detailed wave
propagation process is not emphasized. Equatorial wave
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FIG. 12. The same as in Fig. 2 except that the result is calculated
from a dispersion relation of the fitted delayed oscillator model (4.3)
with the delay h fixed with its value at m 5 mc.

dynamics are collectively viewed as an ocean adjust-
ment process to redistribute mass and heat under chang-
ing wind stress forcing. The emphasis here is the quasi-
Sverdrup balance near the equator and nonequilibrium
of the zonal mean pressure field (or thermocline depth)
under a slowly changing wind forcing. The equatorial
wave dynamics quickly establishes the pressure gradient
for maintaining the quasi-Sverdrup balance. For in-
stance, a westerly wind anomaly is almost in quasiequi-
librium with a positive tilt of thermocline anomaly. This
provides the pressure gradient for a meridional geo-
strophic current away from the equator throughout the
basin so as to drain the mass and heat content slowly
out of the equatorial band. Thus, during a warm phase
with westerly wind stress anomaly, the equatorial ocean
zonal mean heat content is discharging. Similarly, a cold
phase corresponds to the recharging of the equatorial
ocean zonal mean heat content. It is this recharge–dis-
charge process associated with basinwide ocean ad-
justment that leaves an anomalous shallow (deep) equa-
torial thermocline after a warm (cold) event that serves
as the phase transition mechanism proposed by Cane
and Zebiak (1985) and Wyrtki (1986).

In fact, the recharge oscillator embodies the BH de-
layed oscillator, despite the differences in the views on
the transition mechanisms. The conceptual model (2.6)
and its nonlinear version (3.1) can be rewritten into the
same mathematical form as the BH delayed oscillator
under some special conditions. As shown in the neutral
solution (2.9) and nonlinear solution (3.2), anomalies
of the thermocline depth of the western Pacific are neg-
atively proportional to the SST of the eastern Pacific
with a time delay. Substituting the thermocline depth
into the SST variable with the time delay, the neutral
solution (2.9) approximately satisfies the following de-
lay equation:

dT (t)E ˆ5 RT (t) 2 bT (t 2 h). (4.3)E Edt

Here, 5 ab0mcg m/mc; R and h are the same as inb̂ Ï
(2.6) and (2.9). Equation (4.3) takes precisely the same
form of the linear delayed oscillator suggested by BH
based on the numerical fitting to the ENSO-like oscil-
lation in the ZC model. Although (4.3) and (2.6) share
the same neutral solution (2.9) only when m 5 mc, the
leading eigen mode of (4.3) is a good approximation to
the oscillatory mode in (2.6) for a wide range of cou-
pling coefficient as shown in Fig. 12, even if the time
delay h is artificially fixed in (4.3). The significant dif-
ferences, comparing the results in Fig. 2 and Fig. 12,
only occur for low values of the coupling coefficient.

The nonlinear solution (3.2) of the system (3.1) is
also an approximate solution of the nonlinear form of
the BH delayed oscillator,

dTE 3ˆ5 RT 2 bT (t 2 h) 2 e9(2âT (t 2 h) 1 T ) ,E E n E Edt
(4.4)

in the supercritical regime near the Hopf bifurcation even
if h is fixed. Here 5 en/(mcb0)3 and â 5 a/ 1 r2.2e9 vÏn c

In fact, one can always fit a harmonic oscillator with a
delayed oscillator without much error in the solutions
within some range of model parameters.

As with the recharge oscillator, the equatorial zonal
mean thermocline depth also plays a crucial role in the
delayed oscillator. One can perform the same sort of
sensitivity experiments first suggested by ZC and further
analyzed in the context of the recharge oscillator in
section 4a and find a similar conclusion. It will be shown
in Part II that in the framework of linear shallow-water
dynamics, the recharge–discharge process of equatorial
heat content associated with the ocean adjustment de-
pends on the meridional mass transport by the forced
Rossby wave and the boundary mass fluxes as a result
of wave reflections at the east and west sides. The BH
delayed oscillator can be interpreted using the recharge
oscillator by considering the recharge–discharge process
resulting from the forced Rossby waves and their west-
ern boundary reflections. This is what physically un-
derlies the mathematical similarity between the delayed
oscillator and recharge oscillator. Thus the physically
relevant delay argument based on wave propagation
makes the delayed oscillator a different and sound ap-
proximation in the neighborhood of the Hopf bifurcation
of the recharge oscillator. The delayed oscillator model
can be viewed both mathematically and physically as a
special version of the recharge oscillator.

The recharge oscillator is conceptually more general
and yet as simple. With the recharge oscillator as a
conceptual model, one need not chase the details of the
ocean wave propagation and their reflections in the
ocean dynamics adjustment, but rather one can focus
on the slow, large-scale buildup of the western Pacific
warm pool or the equatorial mean thermocline depth.
This may help us to diagnose and understand the slow
ENSO-like oscillation in comprehensive coupled GCMs
(e.g., Philander et al. 1992) and the slow ENSO signals
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in the data bypassing the detailed wave timescale fea-
tures.

c. Mixed SST–ocean dynamics mode and recharge
oscillator

The conceptual recharge oscillation model only cap-
tures two nonoscillatory coupled modes, an SST mode
and an ocean dynamics mode, at the fast wave limit
[where time derivative of thermocline depth in (2.6) is
ignored] and the fast SST limit (where the time derivative
of the SST equation is ignored). The fast-wave limit ap-
proximation eliminates the recharge–discharge mecha-
nism due to the slow ocean dynamical adjustment (Cane
1992b) and thus eliminates the mechanism for the re-
charge oscillator. The fast-SST limit simplification is not
a good approximation either, because the coupling pro-
cess greatly alters the uncoupled fast damping rate of
SST so that zRz K zcz and the time derivative in the SST
equation cannot be ignored. Although there is no oscil-
latory coupled mode in these limits for the coupled sys-
tem (2.6) owing to the simplifications involved, it gives
birth to the recharge oscillation that relies on the merger
of the SST mode and the basinwide ocean adjustment
mode to form an intrinsically coupled and mixed SST–
ocean dynamics mode away from the two extreme limits.

The details of the mixed SST–ocean dynamics os-
cillator may be much more complicated, as elucidated
in JN with a picture of the mixed mode as coming from
a series of mergers of oceanic modes with a nonoscil-
latory SST mode or a propagating SST mode (Jin et al.
1996). These complications are due to the fact that, in
addition to the discrete ocean basin modes (Cane and
Moore 1981), there exist numerous lower-frequency
leaky scattering modes as a part of the spectrum of ocean
adjustment modes of shallow-water dynamics (JN). The
conceptual recharge oscillator model (2.6) provides the
simplest and most constructive way to conceptually ap-
proach the complicated mixed oscillator. It reduces the
complicated merging picture into a single merger of a
decaying ocean adjustment mode with an SST mode.
This simplification allows insight into the physics that
were actually envisioned by the BWCZ hypotheses.
Moreover, the recharge oscillator is at the heart of the
mixed SST–ocean dynamics oscillator and allows us to
understand the richer behavior of coupled ENSO modes
because the recharge oscillator can be more heavily
weighted by a propagating SST mode or by an ocean
adjustment mode in a more complicated context where
the processes for these modes are included. In other
words, with the analytical recharge oscillator model, one
can now understand the unified picture portrayed in JN
from the most relevant central regime toward the ex-
treme limits instead of the other way around. The sim-
plicity of the recharge oscillator model for the mixed
SST–ocean dynamics mode together with its general-
ization to the delayed oscillator model and the fact that
the coupled wave oscillator at the fast wave limit is

continuously related to the mixed mode favor it being
a simple paradigm for describing the main physics of
ENSO as hypothesized by BWCZ.

5. Summary

A new conceptual model is developed to describe the
nature of the ENSO variability observed in the ocean–
atmosphere system of the tropical Pacific based upon
the BWCZ hypothesis. The model is cast in terms of
the SST anomaly over the central to eastern part of the
equatorial Pacific and the thermocline depth over the
warm pool region of the basin. The SST anomaly is
regulated by upwelling and thermocline feedback pro-
cesses, which amplify the SST anomaly as suggested
by Bjerknes (1969). The recharge–discharge process of
the entire equatorial zonal mean heat content is con-
trolled by the strengthening and weakening of the trade
wind system through ocean dynamic adjustment. This
zonal mean heat content is out of phase with the SST
anomaly, which results in further change in the trade
winds. Equatorial waves actively keep the equatorial
Sverdrup balance in check, whereas both the equatorial
wind stress and the zonal mean thermocline depth de-
termine the thermocline depth in the eastern equatorial
Pacific, the essential regulator of the eastern Pacific SST.
The out of phase relation between the zonal mean ther-
mocline depth and the SST anomaly leads to a basinwide
harmonic recharge oscillator. The basic characteristics
of the recharge oscillator are in agreement with obser-
vations and the results of ZC model.

The recharge oscillator model is the simplest physical
model for ENSO based on the BWCZ hypothesis in
representing the amplification processes for SST and the
memory of subsurface ocean in the basinwide dynam-
ical adjustment. The latter resides in the zonal mean
thermocline depth that is not in quasi-equilibrium on
the ENSO timescale. The ocean–atmospheric coupling
ties these processes together to form the recharge os-
cillator. The growth rate of this oscillator largely de-
pends on the positive feedback processes for the SST
anomaly, and its period depends on the timescale of
ocean adjustment, the timescale of SST dynamics, and
the coupling parameters. Over a wide range of the rel-
ative coupling coefficient, this recharge oscillator can
be either self-excited or stochastically sustained with a
robust period of about 3–5 years. The nonlinearity in
(3.1) does not alter the characteristics of the oscillation
near the Hopf bifurcation, although it extends the pa-
rameter range of the recharge oscillation. On the other
hand, the ensemble average phase lag between the SST
of the eastern Pacific and the thermocline depth in the
western Pacific is shorter than the phase lag (about 6
months) determined by the linear eigen mode of the
system, depending on the sources of stochastic forcing.
Thus, for the stochastically sustained recharge oscillator,
the time delay between the thermocline depth and SST
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depends on the dynamics of the coupled model and the
noise forcing as well.

Unlike the delayed oscillator model, the recharge os-
cillator model ignores the explicit role of wave propa-
gation. It is more general in treating the subsurface
ocean memory in the adjustment dynamics. This re-
charge oscillator can be virtually fitted by the delayed
oscillator proposed by BH near the bifurcation point.
The latter can be interpreted physically as a version of
the recharge oscillator. Furthermore, the recharge os-
cillator model also gives the maximum simplification to
the more complicated framework for the tropical inter-
annual variability in JN based on the detailed analysis
of connection of various regimes in parameter space in
relation to the mixed SST–ocean dynamics mode. This
simple recharge oscillator model, with its physical clar-
ity and conceptual generality in describing BWCZ
mechanisms, serves as a better paradigm for ENSO.

Recent studies (Jin et al. 1993, 1994, 1996; Tziper-
man et al. 1994; Tziperman et al. 1995; Chang et al.
1995; Wang and Fang 1996) have suggested two pos-
sible scenarios for the ENSO irregularity and thus also
the intrinsic limit of ENSO predictability; namely, the
deterministic chaos that results from the interaction of
the annual cycle in the climatological basic state with
the interannual ENSO oscillator and the stochastic forc-
ing of uncoupled ‘‘weather noise.’’ The new conceptual
model not only provides a simple paradigm for the un-
derstanding of the regular salient cycling feature of
ENSO, it can also be further used as a prototype model
for gaining insight into these more challenging issues
of ENSO. The role of noise forcing in shaping some
features of ENSO is worth further study in gaining better
understanding of, for instance, the interaction of mon-
soonal variability and ENSO and its predictability.

Acknowledgments. This work was supported by Na-
tional Science Foundation Grant ATM-9312888 and by
National Oceanographic and Atmospheric Administra-
tion Grant GC95773. The author is grateful to Mark
Cane for his detailed and constructive comments on the
manuscript to bring this paper into shape. The author
enjoyed stimulating discussions with Bin Wang and
Roger Lukas. Thanks go to Eli Tziperman and Edward
Schneider for their critiques that led to the improvement
of this paper, Thomas Schroeder and Diane Henderson
for their careful reading and editing of the manuscript,
Stephen Zebiak for his assistance in running the ZC
model, Gary Mitchum for providing the sea level data,
and Xiaowei Sun for producing some of the figures.
This is SOEST Contribution Number 4177.

APPENDIX

Nonlinear Solutions of the Coupled Model
a. Weakly nonlinear solutions

When the relative coupling coefficient is slightly su-
percritical,

m 5 mc 1 D, 0 , D K 1, (A.1)

system (3.1) has a weak growth rate on the order of D.
As in the general case (e.g., Iooss and Joseph 1990; Jin
and Ghil 1990), near the Hopf bifurcation this slow
growth will be bounded by the nonlinearity to allow an
amplitude of its solution to be on the order of D. TheÏ
weakly nonlinear solutions of the nonlinear system (3.1)
near the Hopf bifurcation can be solved using a standard
perturbation method, for instance, the multiple-time-
scale method (e.g., Pedlosky 1986). Introducing a new
independent variable, z 5 tD, to characterize the slow
growth timescale, and expanding the solution in a power
series ordered by D, one can express the time derivative
and variable as follows:

d ] ]
5 1 D ,

dt ]t ]z

(0) (1) 2T 5 ÏD(T 1 DT 1 o(D )),E E E

(0) (1) 2h 5 ÏD(h 1 Dh 1 o(D )). (A.2)W W W

Substituting (A.1) and (A.2) into (3.1), one can find that
the balance of order D gives the following linear equa-Ï
tions:

]
(0) (0) (0)T 5 rT 1 gh ,E E W]t

]
(0) (0) (0)h 5 2rh 2 ab m T . (A.3)W W 0 c E]t

Here, the fact that R 5 r at the critical coupling m 5
mc is used. This set of equations is the same as linear
system of (2.6) with the coupling coefficient m 5 mc.
Its solution can be written as

(0) iv tcT 5 B(z)e 1 c.c.E

ab m0 c(0) (0)h 5 2 T 1 c.c. (A.4)W Eiv 1 rc

where vc is the frequency at the critical coupling, and
c.c. denotes the complex conjugate of the term in the
front of it. In this leading order solution, the amplitude
factor B yet needs to be determined.

The next order (D3/2) balance leads to the following
equations:

]
(1) (1) (1)T 5 rT 1 gh 1 G ,E E W T]t

]
(1) (1) (1)h 5 2rh 2 ab m T 1 G , (A.5)W W 0 c E h]t

where

]
(0) (0)G 5 2 T 1 gb T 1 c.c.T E 0 E1 2]z

(0) (0) 32 e ((h 1 gb m T ) 1 c.c.) ,n W 0 c E

]
(0) (0)G 5 2 h 2 ab T 1 c.c. (A.6)h W 0 E1 2]z
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FIG. A1. (a) The SST amplitudes from analytical weakly nonlinear
limit cycle solutions (solid curve) and numerical time integrations
(solid curve with dots) with en 5 1. (b) The same as (a) except for
the corresponding frequencies. The additional dashed curve is a seg-
ment of the frequency curve in Fig. 2.

The inhomogenous terms GT and Gh will result in fol-
lowing secular terms in (A5):

]
2 iv tcSG 5 2 B 1 gb B 2 ê zBz B e ,T 0 n1 2[ ]]z

2
ab m0 cê 5 3e gb m 2 ,n n) 0 c )iv 1 rc

ab m ]0 c iv tcSG 5 B 2 ab B e , (A.7)h 0[ ]iv 1 r ]zc

and the solvability condition requires that

(ivc 2 r)SGh 2 ab0mcSGT 5 0. (A.8)

This solvability condition yields the following equa-
tion for the amplitude factor of the leading order so-
lution (A4):

] gb r 1 a ê r0 n 2B 5 1 2 i B 2 1 2 i zBz B. (A.9)1 2 1 2]z 2 v 2 vc c

The real and imaginary parts of the first term on the
right-hand side are simply linear corrections to the
growth rate and frequency related to the supercriticality
in the coupling coefficient, and the real and imaginary
parts in the second term are the nonlinear reduction to
the growth rate and nonlinear correction to the fre-
quency. Equation (A.9) has a simple limit cycle solution
as follows:

gb0iDVtB 5 zBze , zBz 5 ,! ên

gb (r 1 a) rê gb a0 n 02V 5 2 1 zBz 5 2 . (A.10)
2v 2v 2vc c c

Combining (A.4) and (A.10), one can rewrite the so-
lution in the form as expressed in (3.2). It should be
noticed that although the relative amplitude of the lead-
ing order solution (A.1) depends on D, its absoluteÏ
value depends on the sensitivity of subsurface temper-
ature to the thermocline depth in the parameterization.
Furthermore, the nonlinear contribution significantly
cancels the linear reduction of frequency in the super-
critical regime so that the periods of the nonlinear so-
lutions are close to the value at the Hopf bifurcation.
A comparison of the results of the analytical solution
with the numerical integration of Eqs. (3.1) is given in
Fig. A1. Clearly, in the neighborhood of the Hopf bi-
furcation, the approximate analytical solution agrees
well with the numerical solutions.

b. Fully nonlinear solutions

Nonlinear system (3.1) has two kinds of limit solu-
tions: limit cycles and steady-state solutions (or limit
points). In fact, all steady-state solutions of (3.1) can
be obtained analytically. When m , 16/15, the zero

solution (or the climate state) is the only steady-state
solution. This state becomes unstable when m . 2/3,
and it gives rise to the self-excitation of the recharge
oscillator through the supercritical Hopf bifurcation, as
analyzed in section Aa. When m . 16/15, two additional
steady-state solutions occur through a Pitchfork bifur-
cation and solutions can be expressed as

c
(2,3)h 5 6 g 2 eE n@1 2! b(1 2 a/r)

3 16
5 6 1 2 e ,n@1 2!4 15m

(2,3)hE(2,3) (2,3) (2,3)T 5 , h 5 2baT /r. (A.11)E W Eb(1 2 a/r)

They represent a warm and a cold state respectively.
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FIG. A2. The same as in Fig. 2 except for the linearized (3.1) with
respect to its new equilibrium states expressed in (A11).

FIG. A3. (a) The bifurcation diagram of (3.1) in terms of the am-
plitude range of SST of the limit cycle solutions from numerical time
interrogations (solid curve with dots) and branches of equilibrium
solutions (dotted and solid curve; dotted part is unstable, and solid
part is stable). (b) The frequencies of the periodic solutions in (a).

Although these steady states depend on the coupling,
one can analyze the stability of these new steady states
analytically. The dependence of the eigenvalues of the
linearized system with respect to these states on the
coupling is of similar character to that in Fig. 2 but at
a much stronger coupling, as shown in Fig. A2. As a
matter of fact, the physics is also the same as the re-
charge oscillator. With the new steady states as the basic
states, the thermocline feedback factor g is reduced to

5 g 2 3en( )2. The linearized equations of (3.1)(2,3)g̃ hE

with respect to these two steady states are identical.
They are the same as Eqs. (2.6), except that the ther-
mocline feedback factor g becomes . A stronger cou-g̃
pling is necessary to effectively combine the SST mode
and ocean adjustment mode into an oscillatory mode
because is smaller than g. These steady states areg̃
stable when m . 19/15 and unstable when m , 19/15.
The frequency at the critical point mpc 5 19/15 is also

3/32, the same as that at the Hopf bifurcation fromÏ
the climate state at mc 5 2/3. However, the instability
near mpc 5 19/15 does not generate limit cycles around
the steady states through supercritical Hopf bifurcations;
instead, it leads to the same limit cycle solution origi-
nated from the Hopf bifurcation of the climate state
through a global bifurcation because the orbit of this
limit cycle passes nearby the steady states. The limit
cycle from the first Hopf bifurcation is the unique stable
limit solution of the system between 2/3 , m , 19/15
because all the three steady-state solutions are unstable
and no other limit cycles exist. When m . 19/15, the
limit cycle collapses and the system settles to either a
warm or a cold steady state. The whole bifurcation tree
is illustrated in Fig. A3. The recharge oscillator exists
far beyond the linear oscillatory regime. This robustness
is of significance because it effectively avoids the drift
to a spurious warm or cold state accompanied by the
flux correction built into anomalous coupled models
such as (3.1).
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