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1 Introduction
This is an evolving detailed syllabus of EPS 231, see course web page, all course materials are
available under the downloads directory.

Homework assignments (quasi-weekly) are 50% of final grade, and a final course project con-
stitutes the remaining 50%. There is an option to take this course as a pass/fail with approval of
instructor.

2 Basics, energy balance, multiple climate equilibria
Downloads available here.

2.1 Multiple equilibria and climate stability
1. energy balance 0d.pdf with the graphical solutions of the steady state solution to the

equation CTt = (Q/4)(1−α(T )− εσT 4 obtained using energy balance 0d.m, and then the
quicktime animation of the bifurcation behavior.

2. Some nonlinear dynamics background: saddle node bifurcation ((p 45, Strogatz, 1994) or
Applied Math 203 notes p 47), and then the energy balance model as two back to back
saddle nodes and the resulting hysteresis as the insolation is varied;

3. Climate implications: (1) faint young sun paradox! (2) snowball (snowball obs from Ed
Boyle’s lecture);

2.2 Small ice cap instability
1. Introduction: The Budyko and Sellers 1d models Simple diffusive energy balance models

produce an abrupt disappearance of polar ice as the global climate gradually warms, and a
corresponding hysteresis. The SICI eliminates polar ice caps smaller than a critical size (18
deg from pole) determined by heat diffusion and radiative damping parameters. Below this
size the ice cap is incapable of determining its own climate which then becomes dominated,
instead, by heat transport from surrounding regions. (Above wording from Winton (2006),
teaching notes below based on North et al. (1981)).
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2. Derive the 1d energy balance model for the diffusive and Budyko versions (eqns 22 and 33):
Assume the ice cap extends where the temperature is less than -10C, the ice-free areas have
an absorption (one minus albedo) of a(x) = a f , and in the ice-covered areas a(x) = ai; ap-
proximate the latitudinal structure of the annual mean insolation as function of latitude using
S(x) = 1+S2P2(x), with P2(x) = (3x2−1)/3 being the second Legendre polynomial (HW);
add the transport term represented by diffusion (r2 cosθ)−1∂/∂θ(Dcosθ∂T/∂θ), which, us-
ing x = sinθ, 1− x2 = cos2 θ and d/dx = (1/cosθ)d/dθ gives the result in the final steady
state 1D equation (22),

− d
dx

D(1− x2)
dT (x)

dx
+A+BT (x) = QS(x)a(x,x0).

as boundary condition, use the symmetry condition that dT/dx = 0 at the equator, leading
to only the even Legendre polynomials.

3. (time permitting) Alternatively to the above, we could model the transport term a-la Budyko
as γ[T (x)−T0] with T0 being the temperature averaged over all latitudes, and the temperature
then can be solved analytically (HW).

4. How steady state solution is calculated: eqns 22-29; then 15 and 37, the equation just before
37 and the 4 lines in the paragraph before these equations. Result is Fig. 8: plot of Q (solar
intensity) as function of xs (edge of ice cap). Analysis of results: see highlighted Fig. 8 in
sources directory, unstable small ice cap (which cannot sustain its own climate against heat
diffusion from mid-latitudes), unstable very-large ice cap (which is too efficient at creating
its own cold global climate and grows to a snowball), and stable mid-size cap (where we are
now).

5. Heuristic explanation of SICI: Compare Figs 6 and 8 in North et al. (1981), SICI appears only
when diffusion is present. It is therefore due to the above mentioned mechanism: competi-
tion between diffusion and radiation. To find the scale of the small cap: it survives as long
as the radiative effect dominates diffusion: BT∼DT/L2, implying that L∼

√
D/B. Units:

[D] =watts/(degree K×m2) (page 96), [B] =m2/sec (p 93), so that [L] is non dimensional.
That’s fine because it is in units of sine of latitude. Size comes out around 20 degrees from
pole, roughly size of present-day sea ice!

6. The important lesson(!): p 95 in North et al. (1981), left column second paragraph, apolo-
gizing for the (correct...) prediction of a snowball state.

7. This is a complex PDE (infinite number of degrees of freedom), displaying a simple bifur-
cation structure. In such case we are guaranteed by the central manifold and normal form
theorems that it can be transformed to the normal form of a saddle node near the appro-
priate place in parameter space. First, transformed to center manifold and get an equation
independent of stable and unstable manifolds (first page of lecture 04 cntr mnfld.pdf); next,
transform to normal form within center manifold (lecture 03 bif1d2.pdf, p 89).
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8. (time permitting) Numerically calculated hysteresis in 1D Budyko and Sellers models: fig-
ures ebm1d-budyko.jpg and ebm1d-sellers.jpg obtained using ebm 1dm.m).

9. (time permitting) One noteworthy difference between Budyko and Sellers is the transient
behavior, with Budyko damping all scales at the same rate, and Sellers being scale-selective.
(original references are Budyko, 1969; Sellers, 1969).

3 ENSO
Downloads available here.

3.1 ENSO background and delay oscillator models
Sources: Woods Hole (WH) notes (Cessi et al., 2001), lectures 0, 1, 2, here, plus the following:
Gill’s atmospheric model solution from Dijkstra (2000) technical box 7.2 p 347; recharge oscillator
from Jin (1997) (section 2, possibly also section 3);

• The climatological background: easterlies, walker circulation, warm pool and cold tongue,
thermocline slope (lecture 1 from WH notes).

• Dynamical basics: equatorial Rossby and Kelvin waves, thermocline slope, SST dynamics,
atmospheric heating and wind response to SST from Gill’s model (rest of WH lecture 1).
The coupled feedback,

• The heuristic delayed oscillator equation from section 2.1 in WH notes. One detail to note
regarding how do we transition from +b̂hoff−eq(t− [1

2τR+τK]) to −b̄τeq(t− [1
2τR+τK]) and

then to −bT (t− [1
2τR + τK]): hoff−eq depends on the Ekman pumping off the equator. In the

northern hemisphere, if the wind curl is positive, the Ekman pumping is positive, upward
(wE = curl(~τ/ f )/ρ), and the induced thermocline depth anomaly is therefore negative (a
shallowing signal). The wind curl may be approximated in terms of the equatorial wind only
(larger than the off-equatorial wind), consider the northern hemisphere:

hoff−eq ∝−wEkman
off−eq ∝−curl(τoff−eq)≈ ∂yτ

(x)
off−eq ≈ (τ

(x)
off−eq− τ

(x)
eq )/L ∝−τ

(x)
eq .

Finally, as the east Pacific temperature is increasing, the wind anomaly in the central Pacific
is westerly (positive), leading to the minus sign in front of the T term,

−τ
(x)
eq (t− [

1
2

τR + τK])/L ∝−T (t− [
1
2

τR + τK]).

• Next, the linearized stability analysis of the Schopf-Suarez delayed oscillator from the WH
notes section 2.1.1. Show numerical solution of this model for values on both sides of the
first bifurcation point using delay Schopf Suarez 1989.m
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• Self-sustained vs damped: nonlinear damping term and, more importantly, the proximity of
ENSO to the first bifurcation point beyond steady state, discuss Hopf bifurcation from non
linear dynamics notes pp 26-28 here or Strogatz (1994).

• (time permitting) A more quantitative derivation of delay oscillator, starting from the shallow
water equations and using Jin’s two-strip approximation (WH notes, section 2.2).

3.2 ENSO’s irregularity
3.2.1 Chaos

• Phase locking: flows on a circle, synchronization/ phase locking, fireflies.

• Circle map and quasi-periodicity route to chaos:

θn+1 = f (θn) = θn +Ω− K
2π

sin2πθn, θn = mod(1)

K = 0 and quasi-periodicity, winding number: limn→∞( f n(θ0)−θ0), not taking θn as mod(1)
for this calculation. 0 < K < 1 and phase locking, Arnold tongues, Farey tree. K = 1 and the
devil’s staircase.

• Some generalities on identifying quasi-periodicity route to chaos in a complex system, in-
cluding delay coordinate phase space reconstruction.

• References for phase locking: (Strogatz, 1994), for quasi-periodicity route to chaos: Schus-
ter (1989). For both: course notes for applied math 203, pages 71,75,77-83 in lecture bif1d2 eli.pdf.
delay coordinate phase space reconstruction in lecture bif2d3 eli.pdf.

• Slides on transition to chaos in CZ model.

3.2.2 Noise

• Non normal amplification from WH notes, plus: maximization of Ψ(τ)T Ψ(τ) instead of
d/dtΨ(t = 0) described in the WH notes. Eigenvalue is the amplification factor from the
initial conditions to the amplified state.

• WWBs in observations: seem stochastic, seen to precede each El Nino event, affect Pacific
by forcing of equatorial Kelvin waves. Show Hovmoller diagram with WWBs and SST
from Yu et al. (2003), in jpg file; wind stress sequence showing WWB evolution from Vec-
chi and Harrison (1997) (all Figs at end of this report); effects of wind bursts on SST and
thermocline depth (heat content) from Mcphaden and Yu (1999) Figs 1,2,3 (last one is model
results); ocean-only model response to a strong WWB: Zhang and Rothstein (1998), Figs. 4,
5, showing the response to a wind burst after 10 days and after several months;
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• Stochastic optimals: the derivation from Tziperman and Ioannou (2002): consider a stochas-
tically forced linear system:

Ṗ = AP+ f (t)

solution is

P(τ) = eAτP(0)+
∫

τ

0
dseA(τ−s) f (s) = B(τ,0)P(0)+

∫
τ

0
dsB(τ,s) f (s)

variance of the solution is given by

var(‖P‖) = 〈Pi(τ)Pi(τ)〉−〈Pi(τ)〉〈Pi(τ)〉

=

〈∫
τ

0
ds

∫
τ

0
dtBil(τ,s) fl(s)Bin(τ, t) fn(t)

〉
=

∫
τ

0
ds

∫
τ

0
dtBil(τ,s)Bin(τ, t)〈 fl(s) fn(t)〉

Specifying the noise statistics as separable in space and time, with Cln being the noise spatial
correlation matrix and D(t − s) the temporal correlation function (delta function for white
noise),

〈 fl(s) fn(t)〉=ClnD(t− s)

we have

var(‖P‖) =
∫

τ

0
ds

∫
τ

0
dtBil(τ,s)Bin(τ, t)ClnD(t− s)

= Tr(
∫

τ

0
ds

∫
τ

0
dt[BT (τ,s)B(τ, t)]C)

≡ Tr(ZC)

This implies that the most efficient way to excite the variance is to make the noise spatial
structure be the first eigenvector of Z. To show this, show that eigenvectors of Z maximize
J = Tr(CZ)=Zi jC ji; assuming that the spatial noise structure is fi, we have Ci j = fi f j and we
need to maximize Zik f j fk+λ(1− fk fk); differentiating wrt fi we get that fi is an eigenvector
of Z; show picture of optimal modes from WH notes; discuss their model dependence; model
dependence of the optimals from Fig. 11, 12 and 17 in Moore and Kleeman (2001).

• Are WWBs actually stochastic, or are their statistics a strong function of the SST, making
the stochastic element less relevant?

3.3 Teleconnections
• Motivation for ENSO teleconnection: show pdf copy of impacts page from El Nino theme

page.
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• Further motivation: results of barotropic model runs from Hoskins and Karoly (1981) Fig-
ures 3,4,6,8,9, showing global propagation of waves due to tropical disturbances.

• General ray tracing theory based on notes-ray-tracing.pdf. Note that this is a non-rigorous
derivation, not using multiple-scale analysis.

• Qualitative discussion from Hoskins and Karoly (1981) after solution 5.23. Start from dis-
persion relation for stationary waves, 0 = ω = ūMk− βMk

k2+l2 , and define Ks = (βM/uM)1/2 =

k2 + l2. Based on these only, discuss trapping by jet. Note that if k > Ks then l must be
imaginary, which implies evanescent behavior and trapping/ reflection of the ray in latitude.

• (time permitting) For baroclinic atmospheric waves, 0 = ω = ūMk− βMk
k2+l2+L−2

R
, so that Ks =

(βM/uM)1/2−L−2
R = k2 + l2, and they are more easily trapped, and are going to be trapped

at the equator with a scale of the Rossby radius of deformation which is some 1000km or so
(see discussion on page 1195 left column).

• Derivation of quantitative solution from the beginning of subsection 5b, equations 5.1-5.13.

• To get some idea of the amplitude of the propagating waves, use the WKB solution (Bender
and Orszag (1978) section 10.1): start with equation 5.18. Substituting into 5.9 this leads to
d2P/dy2+ l2(εy)P= 0 for l2(εy) defined in 5.20; to transform to standard WKB form, define
Y = εy so that ε2d2P/dY 2 + l2(Y )P = 0; try a WKB solution corresponding to a wave-like
exponential with a rapidly varying phase plus a slower correction P = exp(S0(Y )/δ+S1(Y ))
to find

ε
2[(S′0/δ+S′1)

2 +(S′′0/δ+S′′1)]P+ l2P = 0;

let δ = ε and then O(1) equation is S′0
2 + l2(Y ) = 0 so that S0 = i

∫
l(Y )dy (if l2 is nearly

constant, this simply reduces to the usual wave solution eily). Next, consider O(ε) equation
which, after using the O(1) equation, is 2S′0S′1+S′′0 = 0 and the solution is S′1 =−S′′0/(2S′0) =
−(dl/dY )/(2l) =−d/dY (lnl1/2) so that S1 = lnl−1/2 which means that the wave amplitude
is l−1/2. This gives the solution in Hoskins and Karoly (1981) equation (5.21, 5.23), see
further discussion there.

• Discuss the constant angular momentum flow solution (section 5c, page 1192, Fig. 12) and
then the one using realistic zonal flows (Figs. 13, 14, 15, etc);

• Finally, mention that later works showed that stationary linear barotropic Rossby waves
excite nonlinear eddy effects which may eventually dominate the teleconnection effects.

4 Thermohaline circulation
Downloads available here.
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4.1 Preliminaries, scaling, energetics, Stommel box model
• Background, schematics of THC (Schmitz, 1995, all figures, but especially plates 9,10 –

note switched captions); sections and profiles of T, S from /Courses/EPS131/Sources/02-
Temperature-Salinity/1-T-S-rho-tracers-sections-profiles/, figure files 5a,5b,6,7; meridional
mass and heat transport, climate relevance; measurements from RAPIS (Cunningham et al.,
2007) and inverse methods (Ganachaud and Wunsch, 2000); anticipated response during
global warming; MOC vs THC; mixed boundary conditions;

• Scaling for the amplitude and depth of the THC from Vallis (2005) chapter 15, section 15.1,
showing that the THC amplitude is a function of the vertical mixing which in turn is due to
turbulence. Mention only briefly the issue of the “no turbulence theorem” and importance of
mechanical forcing (details in the next section, not to be covered explicitly).

• (Time permitting) Energetics, Sandstrom theorem stating that “heating must occur, on aver-
age, at a lower level than the cooling, in order that a steady circulation may be maintained
against the regarding effects of friction” (eqn 15.23 Vallis, 2005). The “no turbulence theo-
rem” in the absence of mechanical forcing by wind and tides (eqn 15.27) without mechanical
mixing, and (15.30) with; hence the importance of mechanical energy/ mechanical forcing
for the maintenance of turbulence and of the THC. Sections 15.2, 15.3 (much of this material
is originally from Paparella and Young, 2002);

• (Time permitting) Tidal energy as a source for mixing energy (Munk and Wunsch, 1998,
Figures 4,5).

4.2 Stability and multiple equilibria
Mixed boundary conditions via hand written notes on evaporation from a bucket, “virtual” salt flux.
The Stommel-Taylor two box model from these notes, multiple equilibria, bifurcation and hystere-
sis. Qualitative discussion on proximity of present day THC to a stability threshold (Tziperman,
1997; Toggweiler et al., 1996). And again the magic(!) power of box models to predict GCM
results (Fig. 2 from Rahmstorf (1995)). [See also Dijkstra (2000, section 3.1.1, 3.1.2, 3.1.3), and
Aarnout van Delden’s slides 1-3, 8-11].

4.3 Advective and convective feedbacks
• Advective feedback and convective feedback from sections 6.2.1, 6.2.2 in Dijkstra (2000)

and from the original Lenderink and Haarsma (1994); saddle node bifurcation reminder
from my nonlinear dynamics teaching notes or Strogatz (1994); Note that the middle line
between L1 and L2 in Fig. 6.7 in Dijkstra’s book should not be there; if the Heaviside
function is replaced by a continuous function, it probably should be there. Hysteresis from
Fig. 8 in Lenderink and Haarsma (1994) and “potentially convective” regions in their GCM
from Fig. 11.
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• (Time permitting) Use of eigenvectors for finding the instability mechanism: linearize, solve
eigenvalue problem, substitute spatial structure of eigenvalue into equations and see which
equations provide the positive/ negative feedbacks; results for THC problem (e.g., Tziperman
et al., 1994, section 3): destabilizing role of v′∇S̄ and stabilizing role of v̄∇S′; difference in
stability mechanism in upper ocean (v′∇S̄) vs that of the deep ocean (where ∇S̄ = 0 and
v̄∇S′ is dominant); for temperature, also (v′∇T̄ is more important, but from the eigenvectors
one can see that v′ is dominated by salinity effects; GCM verification and the distance of
present-day THC from stability threshold: Figs 4,5,6 from Tziperman et al. (1994); Fig 3
from Toggweiler et al. (1996); Figs 1, 2, 3 from Tziperman (1997).

4.4 THC variability
A review of classes of THC oscillations: small amplitude/ large amplitude; linear and stochas-
tically forced/ nonlinear self-sustained; loop oscillations due to advection around the THC path,
or periodic switches between convective and non convective states; relaxation oscillations; noise
induced switches between steady state, stochastic resonance;

Details of the major types of THC oscillations:

• Essentially linear Loop-oscillations due to advection around the circulation path: Stability
regimes in a 4-box model: stable, stable oscillatory, [Hopf bifurcation], unstable oscillatory,
unstable; Note changes from 2-box Stommel model: oscillatory behavior and change to the
point of instability on the bifurcation diagram; Note the need of stochastic forcing to excite
this type of variability. Compare GCM results of Delworth et al. (1993) and box model
results of (Griffies and Tziperman, 1995).

• Convection and air-sea fluxes only: Flip-flop oscillations (Welander1982 flip flop.m) and
loop oscillations (Dijkstra, 2000, sections 6.2.3, 6.2.4); The Lenderink and Haarsma (1994)
model, when put in the regime without any steady states, shows exactly the same flip-flop
oscillations, yet without the artificial convection threshold necessary in Welander’s model.

• Convection, air-sea and slow diffusion: Relaxation oscillations/ Thermohaline flushes/ “deep
decoupling” oscillations (Winton, 1993, section IV); analysis of relaxation oscillations fol-
lowing Strogatz (1994) example 7.5.1 pages 212-213, or nonlinear dynamics course notes:
slow phase and fast phase etc; relaxation oscillations and THC flushes in ocean GCMs will
be postponed to the discussion DO and Heinrich events;

• Stochastic variability: noise induced transition between steady states (double potential well);
stochastic resonance (show figure from Stommel model); noise excitation of damped linear
oscillatory mode; non normal amplification and stochastic optimals.

• (time permitting) THC variability that involve a wind-gyre element Delworth et al. (1993)
which is also an example of a stochastically forced damped oscillatory mode (Griffies and
Tziperman, 1995). More on this below.
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4.4.1 (time permitting) More on stochastic THC variability

A brief qualitative discussion of the main alternatives: noise induced transition between steady
states (double potential well); stochastic resonance; noise excitation of damped linear oscillatory
mode; non normal amplification and stochastic optimals.

The rest of this section is all (Time permitting).

• First, variability due to noise induced transitions between steady states Cessi (1994) in a
Stommel 2 box model: section 2 with model derivation and in particular getting to eqn 2.9
with temperature fixed and salinity difference satisfying an equation of a particle on a double
potential surface; section 3 with deterministic perturbation;

• As a preparation for the rest of this class: the derivation of diffusion equation for Brown-
ian motion following Einstein’s derivation from Gardiner (1983) section 1.2.1; next, justify
the drift term heuristically; then, derivation Fokker-Plank equation from Rodean (1996),
chapter 5; Note that equation 5.17 has a typo, where the LHS should be ∂

∂t Tτ(y3|y1); Then,
first passage time for homogeneous processes from Gardiner (1983) section 5.2.7 equations
5.2.139-5.2.150; 5.2.153-5.2.158; then the one absorbing boundary (section b) and explain
the relation of this to the escape over the potential barrier, where the potential barrier is actu-
ally an absorbing boundary, with equations 5.2.162-5.2.165; Note that 5.2.165 from Gardiner
(1983) is identical to equation 4.7 from Cessi (1994); Next, random telegraph processes are
explained in Gardiner (1983) section 3.8.5, including the correlation function for such a pro-
cess; Cessi (1994) takes the Fourier transform of these correlation functions to obtain the
spectrum in the limit of large jumps, for which the double well potential problem is similar
to the random telegraph problem.

Next, back to Cessi (1994) section 4: equation 4.4 (Fokker-Planck), 4.6 and Fig. 6 (the
stationary solution for the pdf); then the expressions for the mean escape time (4.7) and the
rest of the equations all the way to end of section 4, including the random telegraph process
and the steady probabilities for this process;

Finally, from section 5 of Cessi (1994) with the solutions for the spectrum in the regime of
small noise (linearized dynamics) and larger noise (random telegraph); For the solution in
the small noise regime (equation 5.3), let y′ = y−ya and then Fourier transform the equation
to get −iωŷ′ = −Vyyŷ+ p̂′ where hat stands for Fourier transform; then write the complex
conjugate of this equation, multiply them together using the fact that the spectrum is Sa(w) =
ŷ′ŷ′† to get equation 5.5; Show the fit to the numerical spectrum of the stochastically driven
Stommel model, Figure 7;

• A GCM version of jumping between two equilibria under sufficiently strong stochastic forc-
ing: Weaver and Hughes (1994).

• Second, an alternative mechanism for stochastic excitation of THC variability: exciting a
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damped oscillatory mode: first, Hasselmann’s model with a red spectrum

ẋ+ γx = ξ(t)
P(ω) = |x̂|2 = ξ

2
0/(ω

2 + γ
2)

vs a damped oscillatory mode excited by noise that results in a spectral peak,

ẍ+ γẋ+Ω
2x = ξ(t)

P(ω) = |x̂|2 = ξ
2
0/((Ω

2−ω
2)+ γ

2)

• Next, the GCM study of Delworth et al. (1993); this paper also demonstrates the link be-
tween the variability of meridional density gradients and of the THC; Note the proposed role
of changes to the gyre circulation in this paper, mention related mechanisms based on ocean
mid-latitude Rossby wave propagation; then a box model fit to the GCM, showing that the
horizontal gyre variability may not be critical and that the variability is due to the excitation
of a damped oscillatory mode (Griffies and Tziperman, 1995); Useful and interesting anal-
ysis methods: composites (DMS Figs. 6,7), and regression analysis between scalar indices
(Figs. 8,9) and between scalar indices and fields (Figs. 10, 11, 12).

• Third, stochastic forcing is expected to interact with non normal dynamics of the THC. Re-
minder of what is transient amplification; the 3-box model of Tziperman and Ioannou (2002):
A more general issue that comes up in this application of transient amplification is the treat-
ment of singular norm kernel (appendix) and infinite amplification; show and explain the
first mechanism of amplification (Figure 2); note how limited the amplification may actually
be in this mechanism; then the more interesting example of Zanna and Tziperman (2005),
showing figures for the amplification and mechanism, taken from a talk on this subject (file
nonormal THC.pdf).

• Fourth, stochastic resonance between periodic FW forcing of the Stommel model and noise
forcing (use Matlab code Stommel stochastic resonance.m from APM115, and jpeg fig-
ures with results: SRa.jpg, SRb.jpg, SRc.jpg);

• Zonally averaged models and closures to 2d models (Dijkstra, 2000, section 6.6.2, pages
282-286, including technical box 6.3); Atmospheric feedbacks Marotzke (1996)?

5 Dansgaard-Oeschger, Heinrich events
Downloads here.

Observed record of Heinrich and DO events: IRD, Greenland warming, possible relation be-
tween the two; synchronous collapses? or maybe not? Use Figures of obs from Heinrich slides.pdf

THC flushes and DO events: DO explained by large amplitude THC changes
(Ganopolski and Rahmstorf, 2001); from this paper, show hysteresis diagrams for modern and
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glacial climates, the ease of making a transition between the two THC states in glacial climate;
time series of THC during DO events; these oscillations are basically the same as Winton’s deep
decoupling oscillations and flushes (Figure 7 in Winton (1993), see under THC variability).

Alternatively, sea ice as an amplifier of THC variability: Preliminaries: sea ice albedo and
insulating feedbacks; volume vs area in present-day climate (i.e. typical sea ice thickness in arctic
and southern ocean); simple model equation for sea ice volume (Sayag et al., 2004, eqn numbers
from): sea ice melting and formation (18), short wave induced melting (3rd term on rhs in 20), sea
ice volume equation (20); climate feedbacks: insulating feedback (3), albedo feedback (19).

Sea ice and DO events: Figure of Camille’s (Li et al., 2005) AGCM experiments (again Hein-
rich slides.pdf). Sea ice as an amplifier of small THC variability (Kaspi et al., 2004); Possible
variants of the sea ice amplification idea: Stochastic excitation of THC+sea ice=DO like variabil-
ity (Fig. 5 in Timmermann et al., 2003); self-sustained DO events with sea ice amplification (Vallis
paper in Paleoceanography).

Precise clock behind DO events? Stochastic resonance? First, (Rahmstorf, 2003): clock
error, triggering error and dating error; is it significant, or can we find a periodicity for which
some “clock” might fit the time series? Next, stochastic resonance: (Alley et al., 2001): consider
a histogram of waiting time between DO events (Fig. 2) and find that these are multiples of 1470,
suggesting stochastic resonance as a possible explanation. The bad news: no clock, (Ditlevsen
et al., 2007), see their Fig. 1 and read their very short conclusions section.

Heinrich events: binge-purge mechanism: following MacAyeal (1993a), and including ar-
gument for which external forcing is not likely (p 777) and heuristic argument for the time scale
(p 782); then show equations for the more detailed model of MacAyeal (1993b) (from slide 22 of
Heinrich slides.pdf (or Kaspi et al., 2004)), and solution (slide 11); on the relation between DO and
Heinrich events: do major DO follows Heinrich events? Do Heinrich events happen during a cold
period just before DO events? When the ice sheet model is coupled to a simple ocean-atmosphere
model (slide 21), can get the response of the climate system as well (slides 27,28,29) via a THC
shutdown (cold event) followed by a flush (warm event). Finally, synchronous collapses? slides
(33-47).

6 Glacial cycles
Downloads here.

6.1 Basics
Briefly: glacial cycle phenomenology: SIS intro slides

Milankovitch forcing: same.
Basic feedbacks: lecture 8 from WH notes;
Supplement the discussion of the parabolic profile with the more accurate expression shown by

the solid line in Fig 11.4 in Paterson (1994); First, rate of strain-stress relationship from Van-Der-
Veen (1999): strain definition (section 2.1, p. 7-9); rate of strain is even better explained by Kundu
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and Cohen (2002) sections 3.6 and 3.7, pages 56-58; stress and deviatoric stress and stress-rate of
strain relationship and Glenn’s law from section 2.3, pages 13-15 of Van-Der-Veen (1999). Next,
the ice sheet profile derivation: the following derivation is especially sloppy in dealing with the
constants of integration, and very roughly follows Chapter 5, p 243 eqns 6-10 and p 251, eqns
18-22 from Paterson (1994):

ε̇xz =
1
2

du
dz

= Aτ
n
xz = A(ρg(h− z)

dh
dx

)n

integrate from z = 0 to z, and use the b.c. u(z = 0) = ub,

u(z)−ub = 2A(ρg
dh
dx

)n (h− z)n+1

n+1
−2A(ρg

dh
dx

)n hn+1

n+1

Let ub = 0 (no sliding) and average the velocity in z,

ū = (1/h)
∫ h

0
dz2A

(
ρg

dh
dx

)n (h− z)n+1

n+1
−2A

(
ρg

dh
dx

)n( hn+1

n+1

)
=

2A
(n+1)

(
ρgh

dh
dx

)n

h
(

1
n+2

−1
)

= − 2A
(n+2)

(
ρgh

dh
dx

)n

h. (1)

Next we use continuity, assuming a constant accumulation of ice at the surface, d(hū)/dx = c
which implies together with the last equation

cx = hū =− 2A
(n+2)

(
ρgh

dh
dx

)n

h2 = K2

(
h

dh
dx

)n

h2

where ablation is assumed to occur only at the edge of the ice sheet at x = L. The last eqn may be
written as

K3x1/ndx = h2/n+1dh

and solved to obtain
(x/L)1+1/n +(h/H)2/n+2 = 1.

Note that this satisfies the b.c. of h(x = 0) = H and h(x = L) = 0. This last equation provides the
better fit to obs in Paterson Fig 11.4 (also shown in WH notes).

6.2 Glacial cycle mechanisms
Simple glacial models: lecture 9 from WH notes;

More ice sheet dynamics: nonlinear diffusion equation. . . temperature equation with internal
strain heating;
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6.3 Milankovitch
On the expected spectral characteristics of the solutions to equations 36 and 37 (Imbrie&Imbrie)
from lecture 9 of the WH notes: Fourier transforming the two, we find iωV̂ (ω) =−kî(ω). Multiply
by the complex conjugate of this equation to get the power spectrum |V̂ (ω)|2 = k2|î(ω)|2/ω2,
implying that higher frequency are damped, which emphasizes the low frequencies, including
100kyr, relative to the high ones, including 20 and 41kyr. For the second model we similarly have
(iω+ τ−1)V̂ (ω) = î(ω), leading to the spectrum |V̂ (ω)|2 = |î(ω)|2/(ω2 + τ−2), and now τ may be
used as a tuning parameter to determine which frequencies are damped. But this still amplifies
both the 100 and 400 frequencies in î(ω), which is inconsistent with the proxies.

Nonlinear phase locking of ice cycles to Milankovitch
Peter Huybers’ integrated insolation and the 40kyr cycles

6.4 CO2

1. Basics of ocean carbonate system, including carbonate ions, prognostic equations for alka-
linity, total carbon and a nutrient, from notes. [Section 4 till eqn 9; section 4.1, eqns 10-19;
section 5, first paragraph].

2. The solution of this set of equation for pCO2 as function of total CO2 and alkalinity based
on Fig 1.1.3 from Zeebe’s book. Demonstrate by discussing the effect of adding CO2 from
volcanoes, of photosynthesis and remineralization (2CO2 +2H2O ⇀↽ 2CH2O+2O2) and of
CaCO3 deposition or dissolution (CaCO3 ⇀↽Ca2++CO2−

3 , or, equivalently, CaCO3+CO2+
H2O ⇀↽ Ca2++2HCO−3 ).

3. The simple 3-box model (Toggweiler, 1999), introduce using his Fig. 1.

4. Heuristic analysis from the beginning of section 3 of (Toggweiler, 1999): (his eqns 4,5,8, or
see hand written notes).

5. Results of full 3 box model for glacial CO2 as function of ventilation by fdh and high latitude
biological pump Ph (section 2), Figures 2 and 3.

6. Criticism of the results: section 2, paragraphs 2, 3 on left column, page 575. Bottom line
is that the model also predicts changes to the high latitude surface nutrients PO4h, and this
change hasn’t been observed. Toggweiler later shows that reversing the THC in the southern
ocean (to be more realistic, actually) helps with this.

7 Equable climate
Downloads here.

Earth Climate was exceptionally warm, and the equator to pole temperature difference (EPTD)
exceptionally small, during the Eocene (55Myr ago), when the continent location was not dramat-
ically different. Many explanations have been proposed, and we will briefly survey some.
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First, Phenomenology from slides.

7.1 Equator to pole Hadley cell
(Farrell, 1990)

• Angular momentum conservation leading to large u in the upper branch of the Hadley
cell (Vallis (2005) p XX, eqns XX). M = (u+Ωr cosθ)r cosθ and if a particle starts with
u(equator) = 0, we find from M(30)=M(equator) that
u(30)=(6300000*2*pi/(24*3600))*(1/cosd(30)- cosd(30))=132m/sec.

• The resulting large uz is balanced via thermal wind by strong Ty, leading to a large EPTD
(eqn 1.5 in Farrell (1990))

• To break this constraint, can dissipate some angular momentum, reduce f (as on Venus), or
increase the tropopause height H.

• (Optional self-reading) The details, given in Farrell (1990), require the extension of the Held-
Hou (1980) ideas to include dissipation. Vallis (2005) summarizes the frictionless theory
very nicely (sections 11.2.2-11.2.3).

7.2 Polar stratospheric clouds (PSCs)
• Greenhouse effect due to PSCs (Sloan et al., 1992)

• Zonal stratospheric circulation (Vallis Fig 13.12, and p 568): SW absorption near summer
pole leads to a reversed temperature gradient in summer hemisphere: e.g., Ty < 0 in southern
hemisphere during Jan. This leads to uz∝Ty/ f0 > 0 in southern hemisphere July, and using
u = 0 at top of stratosphere we get u < 0 (easterlies) during summer (Jan) in the southern
hemisphere stratosphere. Similarly, u < 0 (easterlies) during summer (July) in northern
hemisphere.

• Winter hemisphere (northern Jan, southern July) has no SW at pole, temperature gradient is
not reversed and winds are westerlies there.

• Rossby waves propagating vertically from the troposphere cannot propagate into easterlies,
therefore can only reach stratosphere in the winter hemisphere.

• Brewer-Dobson stratospheric circulation: zonally averaged momentum balance is − f0v∗ =
v′q′ (Vallis, eqn 13.88; q′ = ζ′+ f ∂z(b′/N2), see chapter 7.2). Assuming the potential vor-
ticity flux is down gradient (equatorward, because the gradient is dominated by β), the rhs is
negative, so that the mean flow v∗ > 0 is poleward.
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• B-D circulation warms the pole and cools the equator in the stratosphere (Vallis eqn 13.89):
N2w∗ = θE−θ

τ
, together with positive w in tropics and negative in polar areas forced by pole-

ward B-D meridional flow. This leads to θ < θE (cooling!) at equator (where w∗ > 0) and
θ > θE (warming!) at pole (where w∗ < 0).

• Feedback between EPTD, vertically propagating planetary waves, Brewer-Dobson strato-
spheric circulation and PSCs (Kirk-davidoff et al., 2002): warmer climate means weaker
tropospheric EPTD, this leads to weaker mean tropospheric winds and weaker synoptic scale
motions (which are, in turn, created via baroclinic instability of the mean winds and merid-
ional temperature gradient). Both of these factors weaken the production of vertically prop-
agating Rossby waves (forced by mean winds interacting with topography, and by synoptic
motions). As a result, weaker Eliassen-Palm flux EP, weaker ∇·EP = v′q′, weaker B-D
circulation, and therefore colder pole and warmer equator. Colder pole allows more PSCs
to develop. This, in turn, further weakens the EPTD in troposphere, providing a positive
feedback.

7.3 Hurricanes and ocean mixing
• What sets maximum hurricane strength, “hyper-canes” (from Kerry’s web page): rate of

energy input per unit area into the hurricane is roughly G= εCkρVsL(q∗0−qa), where Vs is the
max surface wind speed, ε efficiency in translating enthalpy to K.E., qs are the atmospheric
surface specific humidity ocean saturation humidity, L is the latent heat of evaporation, ρ the
air density and Ck the bulk coefficient for evaporation. The rate of energy dissipation per
unit area is given by D =CDρV 3

s .

• Think of the hurricane as a Carnot cycle: air acquires heat (in the form of moisture from
evaporation) as it flows along the surface toward the center, it then expands adiabatically
while releasing latent heat going up; it releases the heat to the environment while mixing out
of the convective plumes at the top of the storm (temperature T0, and undergoes compression
at while descending back to the surface. The efficiency of KE generation in a Carnot cycle in
terms of the temperatures of the warm and cold reservoirs involved is ε = (TH−TC)/TH . For
Hurricanes, TH = SST is temperature of the heat source (the ocean surface). TC = T0 is the
average temperature at which heat is lost by the air parcels at the top of the storm. The taller
a hurricane is, the lower the temperature T0 at its top and thus, the greater the thermodynamic
efficiency. For a typical hurricane, ε≈ 1/3.

• Setting dissipation equal to generation (G = D), we get V 2
s = εL(q∗0−qa)Ck/CD. Assuming

the atmosphere to be 85% saturated, and the ratio of the two bulk coefficients to be about
one, we get

V 2
s = εL0.15q∗0 =

SST −T0

SST
L0.15q∗0.

Note that this is exponential in temperature, because of the Clausius-Clapeyron relationship.
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• Finally, assuming that stronger hurricanes lead to stronger ocean mixing, and this to stronger
MOC. Stronger MOC means warmer poles (Emanuel, 2002).

• Consequences on EPTD of enhanced tropical ocean mixing

7.4 Convective cloud feedback
• Moist adiabatic lapse rate (Marshall and Plumb, 2008): sections 1.3.1 and 1.3.2 on pp 4-6

for some preliminaries; section 4.3.1 on pp 39-41 for the dry lapse rate; sections 4.5.1-4.5.2
pp 48-50 for the moist lapse rate.

• Equivalent potential temperature, convective instability and moist static energy (my moist atmospheric thermodynamics tutorial.pdf
notes, sections 7.2, 7.3).

• Two level model, section 2 of Abbot and Tziperman (2009).
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