

External (Equilibrium) Tide

ChatGPT

September 23, 2025

1 Deriving the degree-2 tide-generating potential at the ocean surface

Setup. Let O be Earth's center, \mathbf{r} the position of a surface point ($|\mathbf{r}| = R$), and \mathbf{D} the vector from O to the perturbing body (Moon/Sun), with $|\mathbf{D}| = d$. Let ψ be the angle between \mathbf{r} and \mathbf{D} , so $\cos \psi = \hat{\mathbf{r}} \cdot \hat{\mathbf{D}}$.

Gravitational potential and expansion. The body's potential at \mathbf{r} is

$$\Phi(\mathbf{r}) = -\frac{GM'}{|\mathbf{D} - \mathbf{r}|}.$$

For $r \ll d$ (true for Moon/Sun), expand with Legendre polynomials:

$$\frac{1}{|\mathbf{D} - \mathbf{r}|} = \frac{1}{d} \sum_{n=0}^{\infty} \left(\frac{r}{d}\right)^n P_n(\cos \psi).$$

Why Legendre polynomials? Choose coordinates with the z -axis along \mathbf{D} . Then

$$|\mathbf{D} - \mathbf{r}| = \sqrt{d^2 + r^2 - 2dr \cos \psi} \quad \Rightarrow \quad \frac{1}{|\mathbf{D} - \mathbf{r}|} = \frac{1}{d} \left(1 - 2\frac{r}{d} \cos \psi + \frac{r^2}{d^2}\right)^{-1/2}.$$

For $|t| < 1$, the generating function for Legendre polynomials is

$$(1 - 2xt + t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x) t^n.$$

Set $x = \cos \psi$ and $t = r/d$ (note $r/d < 1$ for the ocean point and lunar/solar distances). This yields the Laplace (Legendre) expansion

$$\frac{1}{|\mathbf{D} - \mathbf{r}|} = \frac{1}{d} \sum_{n=0}^{\infty} \left(\frac{r}{d}\right)^n P_n(\cos \psi).$$

Convergence. Because $|P_n(x)| \leq 1$ for $|x| \leq 1$, the remainder after N terms obeys

$$\left| \frac{1}{|\mathbf{D} - \mathbf{r}|} - \frac{1}{d} \sum_{n=0}^N \left(\frac{r}{d}\right)^n P_n(\cos \psi) \right| \leq \frac{1}{d} \sum_{n=N+1}^{\infty} \left(\frac{r}{d}\right)^n = \frac{1}{d} \frac{(r/d)^{N+1}}{1 - r/d},$$

so the series converges absolutely and uniformly on any set with $r \leq R < d$.

Remove irrelevant terms. Tides depend on *relative* forces inside the Earth-ocean system. Subtract:

- the constant term (no forces): $-GM'/d$,
- the uniform-acceleration (dipole) term, which is canceled by the Earth's free-fall toward the body:

$$\nabla\Phi(0)\cdot\mathbf{r} = +\frac{GM'}{d^3}(\mathbf{D}\cdot\mathbf{r}) = +\frac{GM'}{d}\left(\frac{r}{d}\right)P_1(\cos\psi).$$

The remainder is the **tide-generating potential** (TGP):

$$U(\mathbf{r}) \equiv -GM'\left[\frac{1}{|\mathbf{D}-\mathbf{r}|} - \frac{1}{d} - \frac{\mathbf{D}\cdot\mathbf{r}}{d^3}\right] = -\frac{GM'}{d}\sum_{n=2}^{\infty}\left(\frac{r}{d}\right)^n P_n(\cos\psi).$$

Keep the leading term (quadrupole). The dominant piece is $n = 2$:

$$U(\mathbf{r}) \approx -\frac{GM'r^2}{d^3}P_2(\cos\psi), \quad P_2(x) = \frac{1}{2}(3x^2 - 1).$$

By the common oceanographic sign convention (positive “upward” height when we later divide by g), we take

$$U(\phi, \lambda, t) = \frac{GM'R^2}{d(t)^3}P_2(\cos\psi), \quad \cos\psi = \sin\phi \sin\delta(t) + \cos\phi \cos\delta(t) \cos H(t),$$

evaluated at the **ocean surface** $r = R$. Here $\delta(t)$ is the body's declination and $H(t)$ its local hour angle.

(*Numbers: for the Moon, $GM'R^2/(gd^3) \approx 0.357$ m; for the Sun ≈ 0.164 m. These set the equilibrium height scale before Love-number and geometric factors.*)

2 Start from the tidal potential

For a perturber of mass M' (Moon or Sun) at distance $d(t)$, the degree-2 tidal potential at the ocean surface (Earth radius R) is

$$U(\phi, \lambda, t) = \frac{GM'R^2}{d(t)^3}P_2(\cos\psi),$$

with ϕ latitude, λ longitude, and

$$\cos\psi = \sin\phi \sin\delta(t) + \cos\phi \cos\delta(t) \cos H(t).$$

Here $\delta(t)$ is the body's declination and $H(t)$ its local hour angle. Using $P_2(x) = \frac{1}{2}(3x^2 - 1)$ and expanding, one gets the standard harmonic split:

$$P_2(\cos\psi) = \underbrace{\frac{1}{4}(3\sin^2\phi - 1)(3\sin^2\delta - 1)}_{\text{zonal (m=0)}} + \underbrace{\frac{3}{4}\sin 2\phi \sin 2\delta \cos H}_{\text{diurnal (m=1)}} + \underbrace{\frac{3}{4}\cos^2\phi \cos^2\delta \cos 2H}_{\text{semidiurnal (m=2)}}$$

3 Equilibrium sea level (external tide)

The sea surface is (to first order) an equipotential of **gravity + tidal potential + Earth deformation**. With Love numbers k_2 (potential) and h_2 (vertical) the equilibrium surface height relative to the solid Earth is

$$\eta_{\text{eq}} = \kappa \frac{U}{g}, \quad \kappa \equiv 1 + k_2 - h_2 \approx 0.69,$$

so the **amplitude** of any harmonic component is $\kappa U/g$ times its geometric coefficient.

Plugging the expansion above into η_{eq} and keeping only the time-varying parts (the zonal $m = 0$ piece is a static offset), we get the diurnal and semidiurnal harmonic envelopes:

- **Diurnal (m=1):** coefficient $\frac{3}{4} \sin 2\phi \sin 2\delta$ multiplying $\cos H$.
- **Semidiurnal (m=2):** coefficient $\frac{3}{4} \cos^2 \phi \cos^2 \delta$ multiplying $\cos 2H$.

4 Read off the four A_i

Let

$$\mathcal{C}_L(t) \equiv \kappa \frac{GM_{\text{Moon}}R^2}{g d_{\text{Moon}}(t)^3}, \quad \mathcal{C}_S(t) \equiv \kappa \frac{GM_{\text{Sun}}R^2}{g d_{\text{Sun}}(t)^3}.$$

(Numerically, at mean distances: $\mathcal{C}_L \approx 0.357 \times 0.69 \approx 0.246$ m and $\mathcal{C}_S \approx 0.246 \times 0.459 \approx 0.113$ m; the extra $\frac{3}{4}$ below gives the harmonic's height scale.)

Semidiurnals

$$A_{M2}(\phi, t) = \frac{3}{4} \mathcal{C}_L(t) \cos^2 \phi \cos^2 \delta_m(t),$$

$$A_{S2}(\phi, t) = \frac{3}{4} \mathcal{C}_S(t) \cos^2 \phi \cos^2 \delta_s(t).$$

These are the instantaneous **equilibrium** amplitudes of the lunar and solar semidiurnal parts. At the equator with $\delta \approx 0^\circ$: $A_{M2} \approx 0.185$ m, $A_{S2} \approx 0.085$ m; their ratio is ≈ 0.46 from $(M_S/d_S^3)/(M_L/d_L^3)$.

Diurnals

The diurnal equilibrium tide contains separate lunar and solar pieces that share the same latitude factor $\sin 2\phi$ but different declinations. Grouping them into the classical constituents:

- **Lunar diurnal (O1):**

$$A_{O1}(\phi, t) = \frac{3}{4} \mathcal{C}_L(t) |\sin 2\phi| |\sin 2\delta_m(t)|.$$

- **Lunisolar diurnal (K1):** is the **sum** of lunar and solar diurnal forcings at (nearly) the same frequency,

$$A_{K1}(\phi, t) = \frac{3}{4} |\sin 2\phi| \left| \mathcal{C}_L(t) \sin 2\delta_m(t) + \mathcal{C}_S(t) \sin 2\delta_s(t) \right|.$$

Notes

- $\delta_m(t)$ and $\delta_s(t)$ are the Moon/Sun declinations; $d_{\text{Moon}}, d_{\text{Sun}}$ their distances.

- The absolute-value bars simply indicate that “amplitude” is nonnegative; the signs are carried by the phases.
- In full astronomical practice, each A_i is multiplied by a slowly varying **nodal factor** $f_i(t)$ and phase correction $u_i(t)$ (18.6-yr modulation for lunar terms), and split into nearby lines (e.g., $M_2, N_2, \dots; K_1, P_1, O_1, Q_1, \dots$).

5 From equilibrium to real ocean amplitudes

The **observed external tide** at a location (ϕ, λ) is the equilibrium forcing above passed through the ocean’s **dynamical admittance** $\mathcal{G}_i(\phi, \lambda)$ (solution of the Laplace tidal equations with continents, depth, friction, SAL, etc.):

$$\eta_i(\phi, \lambda, t) = \Re \left\{ \mathcal{G}_i(\phi, \lambda) A_i(\phi, t) e^{-i\omega_i t + i\varphi_i} \right\}, \quad |\eta_i| = |\mathcal{G}_i| A_i.$$

This is why actual A_i maps show strong regional structure and shelf/basin resonances.