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1 Deriving the degree-2 tide-generating potential at the ocean
surface

Setup. Let O be Earth’s center, r the position of a surface point (|r| = R), and D the vector from
O to the perturbing body (Moon/Sun), with |D| = d. Let ψ be the angle between r and D, so
cosψ = r̂·D̂.

Gravitational potential and expansion. The body’s potential at r is

Φ(r) = − GM ′

|D − r|
.

For r ≪ d (true for Moon/Sun), expand with Legendre polynomials:

1
|D − r|

= 1
d

∞∑
n=0

(
r

d

)n

Pn(cosψ).

Why Legendre polynomials? Choose coordinates with the z-axis along D. Then

|D − r| =
√
d2 + r2 − 2dr cosψ ⇒ 1

|D − r|
= 1
d

(
1 − 2r

d
cosψ + r2

d2

)−1/2
.

For |t| < 1, the generating function for Legendre polynomials is

(1 − 2xt+ t2)−1/2 =
∞∑

n=0
Pn(x) tn.

Set x = cosψ and t = r/d (note r/d < 1 for the ocean point and lunar/solar distances). This yields
the Laplace (Legendre) expansion

1
|D − r|

= 1
d

∞∑
n=0

(r
d

)n
Pn(cosψ) .

Convergence. Because |Pn(x)| ≤ 1 for |x| ≤ 1, the remainder after N terms obeys∣∣∣∣∣ 1
|D − r|

− 1
d

N∑
n=0

(r
d

)n
Pn(cosψ)

∣∣∣∣∣ ≤ 1
d

∞∑
n=N+1

(r
d

)n
= 1
d

(r/d)N+1

1 − r/d
,

so the series converges absolutely and uniformly on any set with r ≤ R < d.
Remove irrelevant terms. Tides depend on relative forces inside the Earth-ocean system.

Subtract:
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• the constant term (no forces): −GM ′/d,

• the uniform-acceleration (dipole) term, which is canceled by the Earth’s free-fall toward the
body:

∇Φ(0) · r = + GM ′

d3 (D·r) = + GM ′

d

(
r

d

)
P1(cosψ).

The remainder is the tide-generating potential (TGP):

U(r) ≡ −GM ′
[ 1

|D − r|
− 1
d

− D·r
d3

]
= −GM ′

d

∞∑
n=2

(
r

d

)n

Pn(cosψ).

Keep the leading term (quadrupole). The dominant piece is n = 2:

U(r) ≈ − GM ′r2

d3 P2(cosψ) , P2(x) = 1
2(3x2 − 1).

By the common oceanographic sign convention (positive “upward” height when we later divide
by g), we take

U(ϕ, λ, t) = GM ′R2

d(t)3 P2(cosψ) , cosψ = sinϕ sin δ(t) + cosϕ cos δ(t) cosH(t),

evaluated at the ocean surface r = R. Here δ(t) is the body’s declination and H(t) its local hour
angle.

(Numbers: for the Moon, GM ′R2/(gd3) ≈ 0.357 m; for the Sun ≈ 0.164 m. These set the
equilibrium height scale before Love-number and geometric factors.)

2 Start from the tidal potential
For a perturber of mass M ′ (Moon or Sun) at distance d(t), the degree-2 tidal potential at the
ocean surface (Earth radius R) is

U(ϕ, λ, t) = GM ′R2

d(t)3 P2(cosψ),

with ϕ latitude, λ longitude, and

cosψ = sinϕ sin δ(t) + cosϕ cos δ(t) cosH(t).

Here δ(t) is the body’s declination and H(t) its local hour angle. Using P2(x) = 1
2(3x2 − 1) and

expanding, one gets the standard harmonic split:

P2(cosψ) = 1
4
(
3 sin2 ϕ− 1

)(
3 sin2 δ − 1

)︸ ︷︷ ︸
zonal (m=0)

+ 3
4 sin 2ϕ sin 2δ cosH︸ ︷︷ ︸

diurnal (m=1)

+ 3
4 cos2 ϕ cos2 δ cos 2H︸ ︷︷ ︸

semidiurnal (m=2)
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3 Equilibrium sea level (external tide)
The sea surface is (to first order) an equipotential of gravity + tidal potential + Earth
deformation. With Love numbers k2 (potential) and h2 (vertical) the equilibrium surface height
relative to the solid Earth is

ηeq = κ
U

g
, κ ≡ 1 + k2 − h2 ≈ 0.69,

so the amplitude of any harmonic component is κU/g times its geometric coefficient.
Plugging the expansion above into ηeq and keeping only the time-varying parts (the zonal m = 0

piece is a static offset), we get the diurnal and semidiurnal harmonic envelopes:

• Diurnal (m=1): coefficient 3
4 sin 2ϕ sin 2δ multiplying cosH.

• Semidiurnal (m=2): coefficient 3
4 cos2 ϕ cos2 δ multiplying cos 2H.

4 Read off the four Ai

Let
CL(t) ≡ κ

GMMoonR
2

g dMoon(t)3 , CS(t) ≡ κ
GMSunR

2

g dSun(t)3 .

(Numerically, at mean distances: CL ≈ 0.357 × 0.69 ≈ 0.246 m and CS ≈ 0.246 × 0.459 ≈ 0.113 m;
the extra 3

4 below gives the harmonic’s height scale.)

Semidiurnals

AM2(ϕ, t) = 3
4 CL(t) cos2ϕ cos2δm(t),

AS2(ϕ, t) = 3
4 CS(t) cos2ϕ cos2δs(t).

These are the instantaneous equilibrium amplitudes of the lunar and solar semidiurnal parts. At the
equator with δ ≈ 0◦: AM2 ≈ 0.185 m, AS2 ≈ 0.085 m; their ratio is ≈ 0.46 from (MS/d

3
S)/(ML/d

3
L).

Diurnals

The diurnal equilibrium tide contains separate lunar and solar pieces that share the same latitude
factor sin 2ϕ but different declinations. Grouping them into the classical constituents:

• Lunar diurnal (O1):

AO1(ϕ, t) = 3
4 CL(t)

∣∣sin 2ϕ
∣∣ ∣∣sin 2δm(t)

∣∣.
• Lunisolar diurnal (K1): is the sum of lunar and solar diurnal forcings at (nearly) the same

frequency,
AK1(ϕ, t) = 3

4
∣∣sin 2ϕ

∣∣ ∣∣∣ CL(t) sin 2δm(t) + CS(t) sin 2δs(t)
∣∣∣.

Notes

• δm(t) and δs(t) are the Moon/Sun declinations; dMoon, dSun their distances.
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• The absolute-value bars simply indicate that “amplitude” is nonnegative; the signs are carried
by the phases.

• In full astronomical practice, each Ai is multiplied by a slowly varying nodal factor fi(t)
and phase correction ui(t) (18.6-yr modulation for lunar terms), and split into nearby lines
(e.g., M2, N2, . . . ; K1, P1, O1, Q1, . . . ).

5 From equilibrium to real ocean amplitudes
The observed external tide at a location (ϕ, λ) is the equilibrium forcing above passed through the
ocean’s dynamical admittance Gi(ϕ, λ) (solution of the Laplace tidal equations with continents,
depth, friction, SAL, etc.):

ηi(ϕ, λ, t) = ℜ
{

Gi(ϕ, λ)Ai(ϕ, t) e−iωit+iφi

}
, | ηi| = |Gi|Ai.

This is why actual Ai maps show strong regional structure and shelf/basin resonances.
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