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Outline:
1. Glacial climate, observations of DO & Heinrich events
2. Welander flip-flop
3. The sea ice amplifier
4. |ce shelf collapse: hydrofracturing
5. lce sheet collapse:
1. Basal melting (binge-purge)
2. Marine Ice Sheet Instability (MISI)
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Dansgaard-Oeschger events



Dansgaard-Oeschger events:
abrupt warming events seen
in Greenland ice cores; occur
every ~1500 years, last a few
hundred years;

Figure 4 Abrupt climate changes in Greenland ice-

core data. a, d180 from GRIP core, a proxy for
atmospheric temperature over Greenland.
Dansgaard+Oeschger (D/O) warm events
(numbered). Heinrich events H1-H5 marked by black
dots. b, Time evolution of recent D/O events taken
from a (3, light blue; 4, dark blue; 5, purple; 6, green;
7, orange; 10, red). Many D/O events show the
characteristic slow cooling phase after the initial
warming, followed by a more abrupt temperature
drop. Some events are much longer but still show
this general characteristic (for example, nos 8, 12,
19, 20). A modeled D/O event in black (North
Atlantic air temperature).

D/O events

Eli Tziperman, EPS 231, Climate dynamics

a T T T T
=34+ 1
—_ 1T 2019 — A7 .. 2 T T T T 0
o\g 18 © 514 13 1‘]10 76 43 —
5’ -38 9 5 2 =
[e0]
w °
—42L =20
H‘5 5 1 HA1
1 1 1 ‘I
100 80 60 40 20 0
Age (kyr BP)
b
o
o
— S
X ©
g S
w0 -
@

-200 0 200 400 600 800

Time relative to start of event (yr)

Ganopolski Rahmstorf 2001



D/O-like AMOC oscillations, “flushgs” =™
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Winton 1993 model, based on Matlab code on course webpage



D/O due to weak AMOC variability amplified by se&1e8 changag e

(b)

10

Comparison of LGM and reduced sea ice scenario |. (A) Annual mean sea surface temperature
boundary conditions (deg C) for LGM (left) & reduced sea ice scenario (right). Maximum (February)
and minimum (August) sea ice extents are indicated with the solid and dotted lines. Scenario | has
a maximum sea ice extent equivalent to LGM perennial ice cover, and a minimum sea ice extent
equivalent to the modern day perennial ice cover. ice thickness is 2 m, typical value for Arctic
today. (B) The difference in surface air temperature between the two simulations (degrees C).

Li, Battisti, Schrag, Tziperman, 2005



D/O teleconnections: observation
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Remote relationships with DO events: test for covariance between

time-uncertain series
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Heinrich events
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Heinrich Events: Observations

Typical marine
sediment
(Forams, etc.)

lce rafted
debris (IRD)

Typical N. Atlantic marine sediment core
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Heinrich Events: Observations

Peaks in Pinus (Pine) Pollen Data from
Lake Tulane, Florida Correlate Well with
Sedimentological Data from the North
Atlantic for Heinrich Events | through 5
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charge events from Laurentide ice sheet
to North Atlantic, every 7-10,000 years.

(http://www.ncdc.noaa.gov/paleo/slides/)
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Heinrich Events: Observations
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Ice streams: Ice Velocities for the Antarctit & Shget™ ™ ™

Velocity magnitude [m/yr]

Rignot et al. 2011
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Proposed Paleo-Ice Streams

—» Hypothesised ice stream

Ice sheet margin

3

—— Ice sheet margin

—» Hypothesised ice stream A
N = o7

Stokes & Clark 2001




Hypothesis 1: MacAyeal’s (1993) Binge-purg& Bsciiator s
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Fig. 2. A conceptual view Ol the lemperare-gepin prome v(y) i an 1ice conunn vuring the binge/purge cycle of the Laurentide
ice sheet. Vertical elevation from the base of the ice column is denoted by y and 6 represents temperature. The annual average
sea level atmospheric temperature is denoted by 6. The melting temperature of ice is represented by the black triangles. The
four graphs surrounding the central circle display the sequence of states through which the ice column evolves during a complete
cycle. Time passage is represented by counterclockwise progression through the sequence of graphs.



Hypothesis 1: MacAyeal’s (1993) Binge-purg& Bsciator s

® | aurentide lce Sheet (L/S) thickens due to snow accumulation (binge stage);
geothermal heat is trapped at the base of thick & insulating LIS

® Geothermal heating melts glacier base, reduces bottom friction = ice sheet
slides into North Atlantic ocean (purge stage)

® Thiner glacier allows geothermal heat to difftuse out, base refreezes, cycle repeats
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Glacier ("LIS"") height as function of time during a few Heinrich
cycles. colors indicate temperature within ice sheet.



Hypothesis 1: MacAyeal’s (1993) Binge-purg&&sciflator =

MacAyeal (1993a): climate forcing not likely to play a role based on
temperature diffusion argument; However: there are other
mechanisms: Moulins, Accumulation of melt water in ice shelf
cracks, collapse & elimination of buttressing/back-pressure

https://www.youtub.om/watch?v:—EMCxE1 v22|&t=1s
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Hypothesis 2: Catastrophic ice shelf bfEdR™ > 21 “imate dynamios
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Hypothesis 3: Abrupt retreat of grounding line across &' r&tsyrade BostteT
slope (Marine Ice Sheet Instability/ MISI)

(Weertman, 1974; Schoof, 2007)

0 500 1000 1500

scenario 1: ocean melting at grounding line placing it upstream
of unstable point



Marine Ice Sheet Instability (MFSIf" ===

scenario (1): melting by a warmer ocean
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Marine Ice Sheet Instability (MISTj" = =ree o
scenario (1): melting by a warmer ocean
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Heinrich events triggered by ocean forcing and modulated by isostatic adjustment

Jeremy N. Bassis', Sierra V. Petersen’ & L. Mac Cathles'”
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Heinrich events triggered by ocean forcing and modulated by isostatic adjustment
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Conclusions: DO and Heinrich event:
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® D/O: Greenland ice cores, abrupt warming (10C in 20 years), sustained for
~1000 years, gradual cooling and then abrupt cooling; every ~1500 yr

® Possible mechanism: AMOC variability amplified by sea ice changes that lead
to a strong atmospheric temperature signal
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layers in North Atlantic every 7,000-10,000 years

® Possible mechanism(s):
® Binge-purge collapses of Laurentide Ice Sheet
® Hydrofracturing of ice shelves Mechanism
e MISI|

® Synchronous collapses of different ice sheets: perhaps nonlinear phase locking
through the ocean
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The End



