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1 Momentum equations for the wind-driven circulation, the beta plane
(MINiquiz)

2 \orticity, planetary vorticity
(MINiquiz)
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Wingtip vortices
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Visualizing vorticity

https://en.wikipedia.org/wiki/Vorticity#Examples
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Global wind stress and wind curl

Surface Wind Stress (N/m?)
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Figure 10.2:

a wind-stress of magnitude 0.1 Nm™

Annual mean wind stress on the ocean. A contour of 1 represents
Stresses reach values of 0.1 to 0.2 Nm™?
under the middle-latitude westerlhies, and are particularly strong in the southern
hemisphere. The arrow 1s a vector of length 0.1 Nm™“. Note that the stress
vectors circulate around the high and low pressure centers shown 1n Fig.7.27. as
one would expect 1f the surface wind, on which the stress depends, has a strong

geostrophic component.

Figure 10.11: The global pattern of Ekman vertical velocity (m y_l ) computed
using Eq.(10.7) from the annual mean wind-stress pattern shown in Fig. 10.2. Mo-
tion 1s upward 1in the green areas, downward in the brown areas. wWgr 15 not
U there. The
thick line 1s the zero contour. Computed from Trenberth et al (1989) data. The

computed over the white strip along the equator because f

broad regions of upwelling and downwelling delineated here are used to separate

the ocean 1n to different dynamical regimes. as indicated by the colors in Fig.9.13.
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3 vorticity equation



Announcing!
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4 vortex decay



Hurricanes weakening over land: vortex decay

- Lg : - .
o R .
e

P

e s

(BSKiTia TROPICAL TRACKER

https://oceantoday.noaa.gov/fuelforthestorm/ https://www.wmcactionnews5.com/2018/10/11/breakdown-
why-hurricanes-weaken-when-moving-across-land/
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Spin-down in a cup of tea: Einstein’s tea leaf paradox

https://www.youtube.com/watch?v=sxAiRe QWWA
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Spin-down in a cup of tea: Einstein’s tea leaf paradox

Stirring
f (doesn‘t matter

© which way)

https://www.youtube.com/watch?v=sxAiRe QWWA https://mirjamglessmer.com/2019/08/11/demonstrating-

ekman-layers-in-a-rotating-tank-high-pressure-and-low-
pressure-systems/
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5 Rossby waves



ROSSBY WAVE PATTERNS OVER THE NORTH POLE
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Rossby wave patterns over the
North Pole depicting the formation
of an outbreak of cold air over
Asla

https://www.britannica.com/science/Rossby-wave
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Rossby waves on the atmospheric jet stream

Rossby waves play a significant role in shaping weather. This NASA Goddard animation
shows atmospheric waves as indicated by the jet stream. colors: wind speed, from slow
(blue) to fast (red).
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Global Warming Science 101, Droughts, Eli Tziperman

Atmospheric teleconnections: Rossby wave train forced by ENSO

sea surface temperature anomaly
during an El Nino event
(https://snowbrains.com/noaa-el-
nino-update-today/)
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Global Warming Science 101, Droughts, Eli Tziperman

Atmospheric teleconnections: Rossby wave train forced by ENSO

solid contours: schematic upper

atmosphere geopotential height anomaly; sea surface temperature anomaly
shaded area at equator: enhanced during an El Nino event
cloudiness and rain. Light arrows: mid- (https://snowbrains.com/noaa-el-
tropospheric stream line distorted by wave nino-update-today/)

oattern. (Horel & Wallace 1981)
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cloudiness atmospheric waves
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Global Warming Science 101, Droughts, Eli Tziperman

Atmospheric teleconnections: Rossby wave train forced by ENSO
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Short Rossby waves:
eastward group & westward phase velocity

phase vs group propagation, t=-10.0
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6 Sverdrup balance



Angular momentum conservation & wind-driven ocean circulation:

Angular momentum: L = mr X v = [w

Moment of Inertia:
A 2
I, =) mr
=1

Vortex stretching leads to a smaller moment of inertia & therefore to a faster rotation

INn the ocean, vorticity Is planetary plus relative
vorticity = 2€2sin0 + §
relative vorticity is negligible, hence poleward motion in response to stretching (upward

Ekman pumping), and equatorward motion in response to compression (downward
Ekman pumping)



Sverdrup flow:
wind-adriven ocean flow away from the western boundary

Prevailing http://gyre.umeoce.maine.edu/physicalocean/
Zonal Winds Tomczak/regoc/pdffiles/colour/single/04P-Ekman. pdf
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Fig. 4.4. Depth-integrated steric height P, calculated from the right-hand side of the
Sverdrup relation (egn (4.5)), using the data from Hellerman and Rosenstein (1983).
Units are 10" m2. For details of the integration procedure see Godfrey (1989).

Schematic Sverdrup flow from
observed wind stress curl

http://weatherclimatelab.mit.edu/wp-content/uploads/2017/07/chap10.pdf
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/7 WIind driven circulation: Boundary currents
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8 Heuristic explanations of western boundary currents based on a vorticity
argument:
1) vorticity
2) Rossby waves



ANd Now for another explanation

Make a list of the errors you notice!
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NOTES
9 Abyssal circulation, Stommel-Arons

So
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Equator
Fig. 8. Circulation pattern in meridionally bounded Fig. 6. Circulation pattern in meridionally bounded
ocean with concentrated source S, (fed by western ocean with concentrated source S, at north pole
boundary current from below the equator) and a and a uniformly distributed sink Qo such that
uniformly distributed sink Qo such that Sy = Qpa*(¢r — ;)

N 20
So = Qpa“ (¢, — @) Stommel and Arons 1960
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Fig. 4. Hydrography & float launch sites
(solid dots) along BOUNCE I Section 3:
(a) 0, (b) oy, (c) CFC (F-11), (d)
dissolved oxygen, and (e) absolute
along-slope velocity from lowered
ADCP. The shallow floats were launched
at the level of ULSW, and the deep floats
were deployed several hundred meters
above the bottom in OW.
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FIG. 5. First part of tracks of five floats
deployed along BOUNCE I Section 3, two
shallow (275 and 27°7) and three deep
(254,265, and 269). Dots along tracks
indicate daily positions. Launch locations
of floats are indicated by circled X’s.
Bathymetric contours are every 500 m.

Lagrangian Observations of the Deep Western Boundary Current in the North Atlantic Ocean.
Part I: Large-Scale Pathways and Spreading Rates. AMY S. BOWER AND HEATHER D. HUNT, 2000




The End



