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he Atlantic Meridional Overturning Circulation (AMOCQC)

AMOC schematics: the
sinking occurs over very
small high-latitude areas in
the ocean. the upwelling
back to the surface is very
broad, over entire ocean
basins, not as depicted.
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The Atlantic Meridional Overturning Circulation (AMOCQC)
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Observations of CFC spreading in
the North Atlantic Ocean, showing
the sinking of deep water there.

http://puddle.mit.edu/~mick/cfcsec.html
(link does not work anymore?)
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The Atlantic Meridional Overturning Circulation (AMOCQC)
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Simulation of tracer spreading in deep ocean
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Simulation of tracer spreading in deep ocean
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The Atlantic Meridional Overturning Circulation in the news

&he New York imes
NEW YORK — Atlantic Ocean currents that

AI tantic Ocea n current make Northern Europe warmer than it
would otherwise be have weakened by about

Shows weakenlng S lg NS ; third over the last 50 years, British

By Andrew C. Revkin oceanographer S are reporting.

Nov. 30, 2005
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The day after tomorrow



https://www.youtube.com/watch?v=Ku_IseK3xTc
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The day after tomorrow
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A news update about AMOC

&he New Hork Eimes
Altantic Ocean current
shows weakening signs

By Andrew C. Revkin

Nov. 30, 2005 f v » |

NEW YORK — Atlantic Ocean currents that
make Northern Europe warmer than it
would otherwise be have weakened by about
a third over the last 50 years, British
oceanographers are reporting.
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Altantic Ocean current
shows weakening signs

By Andrew C. Revkin
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A news update about AMOC

&he New Pork Eimes

Scientists Back
Off Theory of a

May 15, 2007

Nov. 30, 2005 » G » L COIder Europe in
NEW YORK — Atlantic Ocean currents that qa Wa rm i n g WorI d

make Northern Europe warmer than it
would otherwise be have weakened by about
a third over the last 50 years, British
oceanographers are reporting.

M Gradual melting of the
. Greenland ice sheet,
B above left, might weaken
@8 he North Atlantic

Current, which bathes
parts of Europe with
equatorial water. But
any cooling effect in
Europe would be
overwhelmed by a
general warming of the
atmosphere.
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s the Atlantic Meridional Overturning Circulation collapsing
already due to global warming”?*

Table 1 | Meridional transport in depth classes across 25°N

1957 1981 1992 1998 2004
Shallower than 1,000 m depth
Gulf Stream and Ekman +356 +356 4356 4376 +37.6
Mid-ocean geostrophic =127 =169 =162 =215 —228
| Total shallower than 1,000m 4229 4187 +19.4  +161 +14.8 |
1,000-3,000 m —10.5 -90 —-102 =122 —-104
3,000-5,000m —14.8 —-11.8 =104 —6.1 —6.9
Deeper than 5,000 m +2.4 +2. +1.2 +2.2 +2.5

Values of meridional transport are given in Sverdrups. Positive transports are northward.

(Bryden et al 2005)

28°N

24°N

20°N
85° W 75° W 60° W 45° W 30° W 15° W 5° W

Figure 1 | Station positions for transatlantic hydrographic sections taken in 1957, 1981, 1992,
1998 and 2004. The 1957 and 1992 sections each went zonally along 24.58 N from the African
coast to the Bahama Islands. Because of diplomatic clearance issues, the 1981, 1998 and
2004 sections angled southwestward from the African coast at about 288 N to join the 24.58 N
section at about 238 W. The 1998 and 2004 sections angled northwestward at about 738 W to
finish the section along 26.58 N.
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s the Atlantic Meridional Overturning Circulation collapsing
already due to global warming??

Table 1 | Meridional transport in depth classes across 25°N

1957 1981 1992 1998 2004

Shallower than 1,000 m depth
Gulf Stream and Ekman +356 +356 4356 4376 +37.6
Mid-ocean geostrophic —-12.7 =169 =162 =215 =228

| Total shallower than 1,000m 4229 4187 4194 +16.1
1,000-3,000m —10.5 -90 -10.2 122
3,000-5,000m —14.8 -11.8 —-104
Deeper than 5,000 m +2.4 +2.1 +1.2

~1992,
1998 and 2004. The 1957 and 19 m the African
coast to the Bahama Islands. Beca y 81, 1998 and
2004 sections angled southwestwar 38 N to join the 24.58 N
section at about 238 W. The 1998 an
finish the section along 26.58 N.
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rying to estimate the warming effect of the Atlantic
Meridional Overturning Circulation (AMOC)

Figure 1. Deviation of the annual-mean surface air temperature from its zonal
average, computed from the NCAR air temperature climatology. Anomalously cold
areas are found over some continental regions, anomalously warm areas over
ocean deep water formation regions.

[Whether this pattern should be attributed to the AMOC is debatable, see
next slide.]

Rahmstorf, S. and A. Ganopolski, Long-term global warming scenarios computed with an efficient coupled climate model. ClimaUc Change,
1999. 43: p. 353-367.
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Is the Gulf Stream responsible
for Europe’s mild winters?

SEAGER, BATTISTI, YIN, GORDON, NAIK, CLEMENT & CANE, 2002
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Is the Gult Stream responsible
for Europe’s mild winters?
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https://www.constantinealexander.net/2013/02/ozone-depletion-trumps-greenhouse-gas-increase-in-jet-stream-shift.html
https://www.constantinealexander.net/2013/02/ozone-depletion-trumps-greenhouse-gas-increase-in-jet-stream-shift.html
https://www.constantinealexander.net/2013/02/ozone-depletion-trumps-greenhouse-gas-increase-in-jet-stream-shift.html
https://www.youtube.com/watch?v=huweohIh_Bw
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Observing the Atlantic Meridional Overturning Circulation
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verturning

Circulation at 26.5°N
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Figure 5. The North Atlantic overturning
circulation with the location of the RAPID
array moorings along 26°N. Modified
from Church, 2007 .
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RAPID: monitoring the Atlantic Meridional Overturning
Circulation at 26.5°N
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The Atlantic Meridional Overturning Circulation Under a
future climate change
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Collapse of the Atlantic Meridional Overturning Circulation
(AMOCQC) in a global warming scenario

Manabe and Stouffer 1993
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Collapse of the Atlantic Meridional Overturning Circulation
(AMOCQC) in a global warming scenario
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Figure 3. Change in surface air
temperature during years 20-30 after
the collapse of the THC. Areas where
the anomaly is not significant have
been masked.
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Collapse of the Atlantic Meridional Overturning Circulation
(AMOC) in a global warming scenario
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TFE.5, Figure 1 | Atlantic Meridional Overturning Circulation (AMOC) strength
at 30°N (Sv) as a function of year, from 1850 to 2300 as simulated by different
Atmosphere—Ocean General Circulation Models in response to scenario
RCP2.6 (left) and RCP8.5 (right). The vertical black lbar shows the range of
AMOC strength measured at 26°N, from 2004 to 2011 {Figures 3.11, 12.35}
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The Atlantic Meridional Overturning Circulation (AMOC) in
the IPCC report

® “There is no observational evidence of a trend in the Atlantic Meridional
Overturning Circulation (AMOC), based on the decade-long record of
the complete AMOC and longer records of individual AMOC
components. {3.6}"
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The Atlantic Meridional Overturning Circulation (AMOC) in
the IPCC report

® “There is no observational evidence of a trend in the Atlantic Meridional
Overturning Circulation (AMOC), based on the decade-long record of
the complete AMOC and longer records of individual AMOC
components. {3.6}"

® “|t is very likely that the Atlantic Meridional Overturning Circulation
(AMOC) will weaken over the 21st century. Best estimates and ranges
for the reduction are 11% (1 10 24%) in RCP2.6 and 34% (12 to 54%) in
RCP8.5. It is likely that there will be some decline in the AMOC by
about 2050, but there may be some decades when the AMOC
increases due to large natural internal variability. {11.3, 12.4}”
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notes section 6.2:
The Stommel model (Marotzke’s simplification),
understanding AMOC tipping points
(use next slides)

Low latitudes High latitudes
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Multiple equilibria and hysteresis of the Atlantic Meridional
Overturning Circulation (AMOC)

(a) steady states (b) steady states (c) stability

dAS/dt

0 2 4 0 2 4
Fs (m/year) Fs (m/year)
(d) Fs for hysteresis run (e) MOC transport, g (f) g hysteresis
20 A 20 1
>
La —
o 10 ] L?) 10 ]
O o
2 o- 01—
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Figure 6.5: Solution of the 2-box Stommel model (Marotzke’s simplification): (a, b) Steady
states of salinity difference and MOC as a function of freshwater forcing. (c) Stability
analysis. (d) Freshwater forcing for hysteresis run. (e, f) Hysteresis results.
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Multiple equilibria and hysteresis of the Atlantic Meridional
Overturning Circulation (AMOC)

dAS/dt

AS

Analyzing stability of a nonlinear dynamical system: Stommel box model (Marotzke’s
simplification) example
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Multiple equilibria and hysteresis of the Atlantic Meridional
Overturning Circulation (AMOC)

20

AMOC (Sv)

Fresh water forcing/CO;

schematic of multiple equilibria and hysteresis (E.T., Global Warming Science, 2022)
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nysteresis of the Atlantic Meridional

Overturning Circulation (AMOC) in full climate models
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Figure 2. Hysteresis curves found in the model inter- comparison. The bottom panel shows
coupled models with 3-D global ocean models, the top panel those with simplified ocean
models (zonally averaged or, in case of the MIT_UWash model, rectangular basins). Curves
were slightly smoothed to remove the effect of short-term variability. Circles show the
present-day climate state of each model.

Rahmstorf et al 2005
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Conseqguences of collapse of Atlantic Meridional
Overturning

Figure 6.6: SST at 2100 minus that at 2006 in an RCP8.5 scenario.
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THC scaling from Vallis showing that the AMOC
amplitude depends on small-scale ocean vertical
(diapycnal) turbulent mixing

graduate level
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Ocean diapycnal mixing & rough topography: Brazil basin
tracer release experiment
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tracer concentration & sigma_4 from valley where
tracer was released obtained in 1997, 14 months
after release. dots show sample locations, blue bar
labelled 'INJ' shows the location and size of the
initial patch. The valley is enclosed by ridges to the
north and south whose depths are roughly where

the white density contours bend sharply down.
Ledwell et al 2000, https://www.nature.com/articles/35003164
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Figure 2. SeaBeam box survey. The shift in
the bathymetry on the southern edge of the
valley is real, and not an artifact. The tracer
was released over this valley at 21.7 S,
18.4 W. The current meter mooring was in
the valley to the east of this point at 21.6 S,

17.8 W.
graduate level
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Ocean diapycnal mixing

and tigdes
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The Adiabatic AMOC alternative

ventilated &
thermocline
/
&,
7z
South ACC edge Equator North

FIG. 1. A sketch of the present-day ROC as represented by the residual
flow. A pole-to-pole cell (thick solid line) with sinking in high latitudes in the
North Atlantic and upwelling in the ACC region coexists with weaker
diffusive cells characterized by high-latitude sinking in each hemisphere
and upwelling mostly confined to the same hemisphere (thick dashed
lines). The thin solid lines show isopycnals. The isopycnals in the ventilated
thermocline region do not outcrop in the ACC region. The isopycnals in the
heavily shaded region outcrop in the channel but not in the North Atlantic.
The group of three intermediate isopycnals outcrop both in the ACC and
the North Atlantic, and it is along these surfaces that the pole-to-pole ROC
can exist with diapycnal diffusion confined to the mixed layer. The total
ROC is the combination of the pole-to-pole cell and the two diffusive cells.

Wolfe and Cessi 2011

graduate level
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The Adiabatic AMOC alternative
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South ACC edge Equator North

FIG. 1. A sketch of the present-day ROC as represented by the residual
flow. A pole-to-pole cell (thick solid line) with sinking in high latitudes in the
North Atlantic and upwelling in the ACC region coexists with weaker
diffusive cells characterized by high-latitude sinking in each hemisphere
and upwelling mostly confined to the same hemisphere (thick dashed
lines). The thin solid lines show isopycnals. The isopycnals in the ventilated
thermocline region do not outcrop in the ACC region. The isopycnals in the
heavily shaded region outcrop in the channel but not in the North Atlantic.
The group of three intermediate isopycnals outcrop both in the ACC and
the North Atlantic, and it is along these surfaces that the pole-to-pole ROC
can exist with diapycnal diffusion confined to the mixed layer. The total
ROC is the combination of the pole-to-pole cell and the two diffusive cells.

Wolfe and Cessi 2011
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FIG. 6. Profiles of time-averaged buoyancy
frequency N in the southern subtropical
gyre 600 km from the western boundary
for the NC (solid) and SO (dashed)
experiments. The scale of the abscissa has
been expanded by a factor of 3 below 800
m to show detall in the abyss. The profile is
averaged over time and a 60 km 3 60 km
horizontal area.

Wolfe and Cessi 2010
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AMOC variability
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AMOC: self-sustained variability

Welandar flip—flop oscillations

0.2

Notes:
0.1

Q

1. Flip-flop oscillations 5
(Welander1982; Dijkstra, =
2000, section 6.2.3); _0.1

2. Figure here: results of 0.2
Welander1982_flip_flop.m

o

3. Relaxation oscillations,
Strogatz (1994) example
7.5.1 pp. 212-213.

phase space

0.5]

>K convecting
>k nonconvecting

N / D

1 02 04 06 08
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AMOC: stochastic variability in a GCM
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102 1071
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Proposed mechanism: feedback between SST and wind...

AMOC: stochastic variability in a GCM

Delworth, Manabe and Stouffer 1993
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stochastic variability in a GCM

PERIOD (years)
100 50 20 10 5 3 2

T
L o
P

FIG. 5. Heavy, solid line denotes spectrum of the first 200 years
of the thermohaline circulation index time series shown in Fig, 4. 2
Thin, solid line denotes the least-squares best fit of a theoretical red
noise spectrum to the spectrum of the thermohaline circulation. 2
Dashed lines denote 95% confidence limits about the red noise spec-
trum. Note: the spectrum was computed by taking the Fourier trans- -
form of the autocovariance function, using a maximum of 50 lags
and a Tukey window (Chatfield 1989, chapter 7).

SPECTRAL DENSITY (Sv 2 year)
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FIG. 4. Time series of the annual-mean intensity of the index of
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the meridional overturning in the North Atlantic. Units are Sverdrups _. . .

(10° m® s™!), Heavy, solid line is a smoothed time series computed (cydi:;ear)

by applying a 13-point binomial filter to the annual-mean data (ap-
proximately a 10-year low-pass filter). (a) Years 1-200, (b) years
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v e—— ) | |
FIG. 6. (a) Differences in annual-mean model sea surface tem-
perature between four decades with anomalously large THC index
values and four decades with anomalously small THC index values.
Units are degrees Celsius. Values less than zero are stippled. (b) Dif-
ferences in observed sea surface temperature between the periods

201-400, (c) years 401-600.

1950-1964 (warm period) and 1970-1984 (cold period). Units are

15 P o _ :
BENA 08 degrees Celsius. Values less than zero are stippled (adapted from
17 0.6l Kushnir 1993). (¢) Differences in annual-mean model sea surface
3 salinity, computed in the same manner as (a). Units are practical
_—— . . .
160 e O e T 04f p salinity units.
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Proposed mechanism: feedback between SST and wind...

YEAR

a “typical” fluctuation). The thin, solid line (p') represents the
regression coefficients between density and the THC index. The thick,
dashed line (p’s) denotes the regression coefhicients for the density
changes attributable solely to changes in salinity versus the THC
index, while the thin, dashed line ( p7) represents the regression coef-
ficients for the density changes attributable solely to changes in tem-
perature versus the THC index. The regression coefficients for p’,
p's, and p'rwere averaged vertically and horizontally over the sinking
region.
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AMOC: The advective feedback

Start with a perturbation corresponding to an enhanced salinity at the

higher latitudes (e.g., box 2)
= Higher density there

» Stronger transport due to large meridional density gradient
= Enhanced advection/transport of salt from lower latitudes (box 1)
= \/\armer temperature of advected water rapidly dissipated by cooling

the high-latitude atmosphere

nositive feedback

to
» | oft with a net additional salt perturbation to higher latitudes
-

Oscillation itself is driven by the advection of salinity anomalies around

the meridional plane.

T*S*

TS 5*

3D Ty, S,

*

> 1,5,
|

T3 S,

-

v

— T4, S84

L

AL

F1G. 3. Schematic plot of the box model geometry.
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AMOC: stochastic variabllity, stability regimes of box model

TS * T*S*

SD Tl, Sl Tz ,S2

* a

T3' S3 1 T4,S4

D
(a) Stability regimes under mixed b.c.
laOWI'l'l'l'l'l'l'l'l'!‘l' L AL
9k M _ FIG. 3. Schematic plot of the box model geometry.
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=
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AMOC: stochastic variabllity, stability regimes of box model
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AMOC: stochastic excitation of damped oscillatory mode

Circulation anomaly

2 T J T ; T . T T

Purely stochastic forcing of a damped oscillatory mode fits GCM results
Griffies & Tziperman 1995 graduate level
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AMOC: stochastic excitation of damped oscillatory mode

Circulation anomaly x 10 Box 2 Anomalous Temperature and Salinity

I I I J
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-1 1
-1 0 1
S, x10

Purely stochastic forcing of a damped oscillatory mode fits GCM results
Griffies & Tziperman 1995 graduate level
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AMOC: stochastic excitation of damped oscillatory mode

Circulation anomaly x 10 Box 2 Anomalous Temperature and Salinity
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AMOQC: stochastic excitation of damped oscillatory mode

Circulation anomaly x 10 Box 2 Anomalous Temperature and Salinity
2 4 ) ; T T ! T T T ! : ! ! ? E ; E RS
I L

1

dominant mean state is 16.9 Sv for

FiG. 4. Yearly averages of the circulation anomaly in the box model
with stochastic heat forcing on the surface boxes (dashed line) and
the linearly detrended THC index for the first 200 yr of the coupled
0 model of D93 (solid line). The circulation of the underlying thermally

deviation is 0.77 Sv. The mean state for the coupled model is 18.3
.0 Sv and the standard deviation is 0.68 Sv. These time serics have
autocorrelation functions shown in Fig. 3.

the box model and its standard

SHfee R AT S : ; ; | ; : ; NG
S ; : ; g V : V! FiG. 5. (a) Dimensionless temperature anomaly a7 (solid line) and
158F--- - .......... ‘ .......... .......... ........ ........... “" ........ Salinity anomaly ﬂSé (dashed line) for the northcm Surface box (box
i vn e = L 2) in the box model with surface stochastic forcing. Note the phase

relation (salt leads temperature) indicative of the oscillating mode

Coupled Model Shown in Fig. 2. (b) The (8BS, aT3) plane for years 30—70 of (a) with

_ 08 4 s e i T .
' selected years indicated. The trajectory is in the counterclockwise
................................. l“.J ol fo\ffl diI'CCtiOl’l Sil’lCC Salt leadS temperatlll'e.
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FiG. 6. (a) Linear regression of the anomalous density in the northern boxes against the filtered anomalous thermohaline circulation. The
double-dashed line is for pan = pof(Ss + 652)/(1 + ), the dotted line is for p,.,,, = —poa(Ts + 6T3)/(1 + 6), and the solid line is for the
total density pioa = pean + Piemp- (b) Corresponding regressions for the coupled model (Fig. 8 of D93).
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Purely stochastic forcing of a damped oscillatory mode fits GCM results
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AMOC: stochastic forcing of jumps between steady states
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AMOC: stochastic forcing of jumps between steady states
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AMOC: stochastic forcing of jumps between steady states

Latitude {°N)

o U I I (R FIG. 4 The global ocean poleward heat transport at 28° N over the

e ~CE ) 20,800 yr of integration. a, The weak stochastic experiment (standard
deviation, s.d. =16 mm per month, iower curve) and the medium stoch- v,
astic experiment (s.d. =32 mm per month, upper curve). b, The strong
stochastic experiment (s.d. =48 mm per month).

. : : | ' ' ]
medium forcing | v, | | ]
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b 0 ~ F1G. 5. A typical time series of y solution of (2.8b). At every time
Gioval ocesn L[ Cstep, of size df = 3.33 X 1073, the stochastic forcing is randomly
picked from a Gaussian distribution with zero mean and standard
deviation ¢ = 3.3. The values of p and p? are as in Fig. 2. The salinity
difference y spends most of the time in the neighborhood of the stable
states y, and y..

_ i)

FIG. 2 The Atlantic Ocean meridional overturning streamfunction in Sv
(1 Svis 10°m®s 1) for the three equilibria. a, The normal ‘present-day’
conveyor. b, The weak ‘colder’ conveyor. ¢, The strong ‘warmer’ con-
veyor. The x-axis is the latitude with positive and negative values indi-
cating °“N and °S, respectively. Positive and negative contours indicate
clockwise and counterclockwise circulations, respectively, with H and L
indicating local maxima and minima, respectively.

Northward heat tre

Weaver and Hughes 1994, Cessi 1994
Strong stochastic forcing of Stommel model and of GCM graduate level
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AMOC variability: stochastic resonance

Resting state Activated state
Vi) = éx‘l 0 V(z,t) = V(x) — Az sin(wt)
4 2

V()

| @ | | In presence of noise
Resanance \f@/ Pttt w
Peak

FIGURE 1 | Mechanism of stochastic resonance. (A) Sketch of a double well potential V(x). In this example, the values a and b are set to 2 and 0.5, respectively. The

minima are located at x = i\/% and are separated by a barrier potential AV = %. (B) In the presence of periodic driving, the height of the potential barrier oscillates
through an antiphase lowering and raising of the wells. The cyclic variations are depicted in the cartoon. A suitable dose of noise (represented by the central white
noise plot) will allow the marble to hop to the globally stable state. (C) Typical curve of output performance versus input noise magnitude, for systems capable of
stochastic resonance. For small and large noise, the performance metric is very small, while some intermediate non-zero noise level provides optimal performance.

Panels A,B adapted from Gammaitoni et al. (1998).

Output performance

Noise magnitude

White et al, 2019, doi:10.3389/fphys.2018.01865
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IC resonance

strong forcing,
frequent
transitions

weak forcing,
rare transitions

‘optimal’ forcing,
periodic
transitions

| . . .
| Stommel model under periodic+stochastic FW forcing
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notes: stochastic AMOC variabillity:

1. Hasselmann
2. stochastically forced damped oscillator

3. reminder: transient non-normal growth

4. stochastic optimals

what is this stochastic forcing”? e.g. NAO, next 2 slides
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Stochastic forcing of AMOC variability by N

Var. = 42.6% EOF1 SLP DJFM 1899-2018

0.93
3.0

2.0
1.0

Illlllllllllll'llllllllllllll

0.0 | b
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-2.0 ’

'3.0 l I I I l ] ] I ] I I I I ] ] I l I I I ' ] ] I
1900 1920 1940 1960 1980 2000

NAO index time series is defined as:
Sea Level Pressure (SLP) at Lisbon, Portugal, minus Reykjavik, Iceland, Dec—-Mar mean
or
The time series of the first EOF (principal component) of SLP over the Atlantic sector that is shown
above

https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based graduate level
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Stochastic forcing of AMOC variability by NA

1. NAO index time series: SLP from Lisbon, Portugal, minus Reykjavik, Iceland, Dec—-Mar mean
2. calculate composite air-sea fluxes for +/- NAO phases
3. create anomalous fluxes w/NAQO spatial pattern & sine amplitude, periods 2, 5, 10, 20, 50, 100 yrs.

| | | | | | | | |
(a) NAO heat flux forcing derived from ECMWEF Interim Reanalysis
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= | onger NAO time scale leads to a larger amplitude AMOC response, up to a limit.
Stochastic response not explored yet Delworth & Zeng 2016
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