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Notes section 1
Damped inertial oscillations
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Figure 9.1 Inertial currents in the North Pacific in October 1987 (days 275-300) measured by holey-sock drifting buoys
drogued at a depth of 15 meters. Positions were observed 10-12 times per day by the Argos system on NOAA
polar-orbiting weather satellites and interpolated to positions every three hours. The largest currents were generated by
a stormon day 277. Note: these are not individual eddies. The entire surface is rotating. A drogue placed anywhere in

the region would have the same circular motion. From van Meurs (1998).
https://www.ocean.washington.edu/courses/oc512/lec20-28-gfd1-2011.pdf
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Damped inertial oscillations
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Notes section 2
Ekman transport
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Global distribution of chlorophyll averaged over the period from 1 January 2002 to 28 February 2005 using data collected from MODIS on the

Aqua satellite. Chlorophyll values range from 0.01 mg/m3 (purple) to 60 mg/m3 (red). From NASA Goddard Space Flight Center.
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Notes section 3
Ocean-interior vertical friction
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Notes section 4
Scale-selective vs non scale-selective friction
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Oceanography: An
Invitation to Marine Science
by Tom S. Garrison

The Ekman spiral and the mechanism by which it operates. The length of the arrows in the diagrams is
proportional to the speed of the current in each layer. (a) The Ekman spiral model. (b) A body of water
can be thought of as a set of layers. The top layer is driven forward by the wind, and each layer below
Is moved by friction. Each succeeding layer moves with a slower speed and at an angle to the layer
immediately above it — to the right in the Northern Hemisphere, to the left in the Southern Hemisphere
— until water motion becomes negligible. (c) Though the direction of movement varies for each layer in

the stack, the theoretical net flow of water in the Northern Hemisphere is 90° to the right of the
prevailing wind force.


https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Tom+S.+Garrison&text=Tom+S.+Garrison&sort=relevancerank&search-alias=books
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NOTES
6 Mass conservation/ continuity equation

/ EKman pumping



Global wind stress and wind curl

Surface Wind Stress (N/m?)
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Figure 10.2:

a wind-stress of magnitude 0.1 Nm™

Annual mean wind stress on the ocean. A contour of 1 represents
Stresses reach values of 0.1 to 0.2 Nm™?
under the middle-latitude westerlhies, and are particularly strong in the southern
hemisphere. The arrow 1s a vector of length 0.1 Nm™“. Note that the stress
vectors circulate around the high and low pressure centers shown 1n Fig.7.27. as
one would expect 1f the surface wind, on which the stress depends, has a strong

geostrophic component.

Figure 10.11: The global pattern of Ekman vertical velocity (m y_l ) computed
using Eq.(10.7) from the annual mean wind-stress pattern shown in Fig. 10.2. Mo-
tion 1s upward 1in the green areas, downward in the brown areas. wWgr 15 not
U there. The
thick line 1s the zero contour. Computed from Trenberth et al (1989) data. The

computed over the white strip along the equator because f

broad regions of upwelling and downwelling delineated here are used to separate

the ocean 1n to different dynamical regimes. as indicated by the colors in Fig.9.13.
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