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Introduction to Physical Oceanography
Homework 4 - Solutions

1. Geostrophy and thermal wind

(a) The satellite observed a sea surface height increase of 1m over 200km toward the south-
east at 35◦N. The geostrophic velocity at the surface (magnitude and direction) is given
by

f k̂×~u = −
1
ρ0

∇p (1)

Using the vertically integrated equation for the hydrostatic pressure p = ρ0g(h(x,y)− z)),
we can write

k̂×~u = −
g
f

∇h (2)

The magnitude of the geostrophic velocity at the surface is then given by

|~u| =
g
f
|∇h| =

9.81m/s2

2 ·7.3 ·10−5sin(35◦N)s−1
1m

200km
= 0.5857m · s−1 (3)

The slope of the sea surface increases toward the southeast, therefore the pressure gra-
dient force is directed from the southeast to northwest, and to balance this force Coriolis
is in the opposite direction. Since in the northern hemisphere, Coriolis acts to the right
of the velocity, we conclude that the direction of the geostrophic velocity at the surface
is northeast (see figure 1).
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Figure 1: Forces and current for question 1(a).
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(b) The average density for the 2 stations A and B are from a depth of 2000db to the surface.
We assume that the level p0 = 2000db is flat meaning that zA = zB = z(p0 = 2000db)
(this level is called a level of no motion, where at a given depth z, the horizontal pres-
sure gradient vanishes and the geostrophic velocity is therefore zero). Integrating the
hydrostatic equation from p0 = 2000db up to the surface, we obtain for station A

1
ρAg

(patm − p0) = −hA + z(p0 = 2000db) (4)

and for station B
1

ρBg
(patm − p0) = −hB + z(p0 = 2000db) (5)

Taking the difference between these 2 equations and assuming that patm = 0:

p0

g

(

1
ρB

−
1

ρA

)

= −hA +hB (6)

Using the values g = 9.81m/s2, p0 = 2000db, ρA = 1027kg/m3 and ρB = 1027.8kg/m3,
the in the sea surface height difference is ∆h = hB − hA = −1.55m. The sea surface
height increases from station B to station A by 1.55m over a distance of L = 250km,
the slope of the sea surface height α is given by

α =
∆h
L

= 6.2∗10−6 (7)
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Figure 2: The water columns at station A and B showing the level of no motion at p0 = 2000db,
the balance of forces and the surface current direction.

Given the slope of the sea surface, we can find the magnitude and the direction of the
current using the same expression than the one found in 1(a):

|~u| =
g
f
|∇h| =

9.81m/s2

2 ·7.3 ·10−5sin(35◦N)s−1 ·6.2∗10−6 = 0.72m · s−1 (8)

From figure 2 it is clear that the direction is North-East (same than the direction given
by figure 1).
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(c) In this question, the sea surface height difference between station A and B is known
and equal to

∆h = hA−hB =
1m

200km
250km = 1.25m (9)

In addition, the average density from a level of 2000db up to the surface is ρA =
1027kg/m3 and ρB = 1027.8kg/m3 for station A and B respectively. Since the level of
2000db is not a level of no motion anymore, it means that the pressure surface has a
slope (not flat anymore) or equivalently that zA(p = 2000db) 6= zB(p = 2000db). We
can again integrate the hydrostatic equation from p = 2000db up to the surface such
that at station A, we obtain

1
ρAg

(patm −2000db) = −hA + zA(p = 2000db) (10)

and at station B
1

ρBg
(patm −2000db) = −hB + zB(p = 2000db) (11)

Again assuming that patm = 0 and subtracting the 2 equations:

2000db
g

(

1
ρB

−
1

ρA

)

= −hA +hB + zA(p = 2000db)− zB(p = 2000db) (12)

leading to

zA(p = 2000db)− zB(p = 2000db) =
2000db

g

(

1
ρB

−
1

ρA

)

+hA −hB (13)

Using ∆h = hA−hB = 1.25m and 1db = 104Pa,

zA(p = 2000db)− zB(p = 2000db) = −0.2952m (14)

The level p = 2000db slopes toward the northwest. Therefore at a given depth near the
level p = 2000db, the pressure at the station A is smaller than the pressure at the station
B. At station B for a depth equal to zB the pressure is equal to 2000db, let’s find what is
the pressure at station A at the same depth using zA = zB−0.2952m and the hydrostatic
equation:

pA(zB) = ρAg(hA− zA +0.2952m)

= ρAg(hA− zA)−ρAg ·0.2952m
= 2000db−ρAg ·0.2952m ≈ 1999.7025db

As expected at a given depth z = zB, the pressure at station A is smaller than the pressure
at station B and this difference of pressure is approximatively equal to 0.3db over
a distance of 250km, such that |∇p| = 0.3db/250km. Finally, using the geostrophic
equation, we can find the magnitude of the velocity at a depth of 2000db:

|~u| =
1
f ρ

|∇p| ≈ 0.138m · s−1 (15)

To find the direction of the current at this depth: the pressure gradient is southeast and
the Coriolis force is directed northwest, the velocity near 2000db is then southwest (see
Fig. 3.
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Figure 3: The water columns at station A and B showing the p = 2000db level (not flat anymore)
and deep current direction.

(d) Assume that stations A and B have the same salinity. The column of water at station B
is shorter and denser than the one at station A, we can expect the water at station A to
be warmer than the water at station B. At the surface, if we look downstream at a point
midway between A and B, the warm water is the right of the current. But at a depth of
2000db, if we look downstream at a point midway between A and B, the warm water
is the left of the current.

2. T-S diagram and water masses mixing:

(a) This station is located in the South Atlantic between the mid-Atlantic ridge and the
coast of Angola.

(b) See Fig. 4

Figure 4: T-S diagram and the different water masses

(c) The data on the T-S diagram fit perfectly well the idea of water masses being formed
by mixing of waters from different water types.

(d) The water masses are:
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• North Atlantic Deep water (NADW): 3 < T < 5◦C, 34.9 < S < 35ppt. It extends
at depth of about 2km. We think that the source of the North Atlantic Deep water
is principally Greenland (about 80% of the deep water is formed there). The for-
mation of deep water occurs by open-ocean process (deep water is formed from
the surface by cooling and then sinks and overflows the sills between Greenland
and Scotland into the North Atlantic). Some of NADW is formed in the Labrador
Sea by the same process and occasionally in the Irminger Sea.

• Antarctic Bottom Water (AABW): −1.9 < T < 0◦C, 34.6 < S < 34.7ppt. It is the
densest water mass of the World Ocean! AABW is found to occupy the depth range
below 4000 m of all ocean basins that have a connection to the Southern Ocean at
that level (to enter the oceans, the AABW has to pass through and mix with the
water of the Antarctic Circumpolar Current). Most of it is formed in the Weddell
Sea and Ross Sea by deep winter convection (along the coast of Antarctica). The
formation of the AABW is a near-boundary sinking occurring due to the formation
of ice. While ice freezes out, it rejects salt and increase the density of the water
(which was already cold and dense). This water sinks along the shelf and down
the slope into the South Atlantic.

• Antarctic Intermediate Water (AAIW): 3 < T < 4◦C, 34.1 < S < 34.2ppt. This
water mass has a salinity minimum found at depths between 700 and 1000 m in
the Southern Hemisphere. It is formed at various locations along the Antarctic
Polar Front and through deep winter convection east of southern Chile and south
of the Great Australian Bight. It enters all oceans with the Antarctic Circumpolar
Current and spreads toward the equator between the central water and the deep
water.

• South Atlantic Central Water (SACW): 4 < T < 16◦C, 34.2 < S < 35.6ppt. In
general, central waters are water masses that form directly above the permanent
thermocline. Generally, they are confined to regions closer to the equator and
near the surface. This water mass is south of 15◦N with pretty uniform properties
throughout its range and can be represented by a straight line on the T −S diagram.
This water is subducted from the Subtropical Convergence Zone.

3. Buoyancy oscillations and equation of state: from the table posted on the course home page,
we see that the thermal expansion coefficient (α = (1/ρ0)∂ρ/∂T |T0,S0) at a given pressure p
is highly dependent on temperature while the haline expansion coefficient (1/ρ0)∂ρ/∂S|T0,S0

varies very little with temperature.

The equation of state for the ocean is a very complicated nonlinear equation and as a first
approximation we simply do a Taylor expansion of ρ(T,S) at a given pressure around some
reference density ρ0 such that ρ0 = ρ0(T0,S0).

Consider a given temperature profile (salinity is assumed to be uniform and equal to 35ppt):

CASE 1: the temperature changes from 3◦C at the surface to 1◦C at a depth of 200m. At
this depth the pressure is roughly equal to 20bar, for our purpose, we will assume that the
values of α and β at 200m are similar to those at the surface, therefore at both depth α and β
are given for a pressure p = 0 from the table. For this case, we will linearize the equation of
state around T0 = 2◦C and S0 = 35ppt such that

ρ(T,S) = ρ0(T0 = 2,S0 = 35)(1−α(T −2)+β(S−35)) (16)
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Since we assumed that the salinity is uniform, the last term in this equation is zero leading
to

ρ(T,S) = ρ0(T0 = 2,S0 = 35)(1−α(T −2)) (17)

From the table, ρ0 = 1027.972kg/m3 and α = 781 ∗ 10−7K−1, and figure 5.a shows the
density profile as function of temperature (of course, the profile is linear).

The Brunt-Vaisala frequency N is the frequency of vertical oscillations in a stratified fluid
(we obtained this frequency from a balance between the vertical acceleration and the buoy-
ancy in the z-momentum equation). The square of the Brunt-Vaisala frequency is given by

N2 = −
g
ρ0

∂ρ
∂z

(18)

Using the linear equation of state, the chain rule ( ∂ρ
∂z = ∂ρ

∂T
∂T
∂z ) and the definition of α, we

obtain

N2 = −gα
∂T
∂z

(19)

For this case, we obtain that N = 0.0028sec−1. The period of oscillation is given by T =
2π/N = 2270sec = 0.6306hr.

CASE 2: the temperature changes from 23◦C at the surface to 21◦C at a depth of 200m.
We use the same arguments than those mentioned above, but we will now linearize around
T0 = 22◦C.

ρ(T,S) = ρ0(T0 = 22,S0 = 35)(1−α(T −22)) (20)

From the table, at this temperature we have ρ0 = 1024.219kg/m3 and α = 2734K−1. Figure
5.b shows the density profile as function of temperature.

For this case, we obtain that N = 0.0052sec−1. The period of oscillation is given by T =
2π/N = 1213.2sec = 0.337hr.

Conclusion: we started with 2 different cases: case 1 had colder water at the surface than
case 2. But, the vertical gradient of temperature of case 1 was equal to the vertical gradient of
temperature of case 2. Even though the vertical temperature gradient is equal in both cases,
due to dependency of the thermal expansion coefficient on temperature, their vertical density
gradient differ (we can see the slope on the right plot in Fig. 5. In addition, considering
only the effect of temperature in the ocean, we can see from the figure above that dependent
around which point we linearized the equation of state, we could get up to 4kg/m3 difference
in density at the surface. The first order Taylor expansion is a good approximation in general,
but one has to keep in mind that due to the strong dependence of α on the temperature it is
not a great approximation.
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Figure 5: On the left: Density profile as function of temperature (a) for case 1 where T varies
from 3◦C to 1◦C, (b) for case 1 where T varies from 23◦C to 21◦C; on the right: Density profile as
function of temperature for Case 1 and 2 extrapolated for T varying from 0◦C to 30◦C.
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