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Introduction to Physical Oceanography
Homework 3 - Solutions

1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

(a) Looking on the web you can find a lot of maps of the sea surface height for the Gulf
Stream and the Drake Passage from models, observations . . . Figure 1 shows two ex-
amples for the sea surface height in the area near the Gulf Stream.

Figure 1: Map of the sea surface height near the Gulf Stream

Figure 2 shows the sea surface height in the region of the Antarctic circumpolar current
including the Drake Passage (between the southern tip of South America and Antarc-
tica).

(b) From figure 1 and 2 as well as other sources, we can roughly estimate the sea surface
height difference (∆SSH) across the Gulf Stream and the ACC. For the Gulf Stream
over a width of approximatively 70km, ∆SSHGS ≈ 1m, while for the ACC the width is
about 700km and ∆SSHACC ≈ 1m (note: ∆SSH for both the Gulf Stream and the ACC
highly vary in space and time).

(c) Assuming that the ocean is in hydrostatic balance (the vertical pressure gradient bal-
ances gravity) and that the density is constant and equal to ρ0, we can write

∂p
∂z

= −ρ0g ⇒ ∂p = −ρ0g∂z (1)

and then integrating from a depth z up to the surface z = h(x)
Z p(z=h(x))

p(z)
∂p = −ρ0g

Z h(x)

z
∂z ⇒ patm − p(z) = −ρ0g(h(x)− z) (2)

The pressure at the surface p(z = h(x)) is equal to the atmospheric pressure patm. Since
patm is negligible compared to p(z), the pressure in the ocean is given by

p(z) = ρ0g(h(x)− z) (3)
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Figure 2: Map of the sea surface height in the Southern Ocean

(d) Transport: we will first look for the geostrophy velocities using the geostrophic ap-
proximation and then from the velocities evaluate the transport in both the ACC and
the Gulf Stream.
Gulf Stream: we will assume that the Gulf Stream velocities are primarily northward
and thus use only the x-momentum equation where

f v =
1
ρ0

∂p
∂x

. (4)

Taking ∂
∂x of Eq. 3 for the pressure in the ocean, we obtain that the velocity is propor-

tional to the sea surface height

f v =
1
ρ0

∂
∂x

(ρ0g(h(x)− z)) = g
∂h
∂x

, (5)

such that the Gulf Stream velocity is simply

v =
g
f

∂h
∂x

(6)

where ∂h/∂x = ∆SSHGS/∆x = 1m/70km (the sea surface increases eastward). Using
f = 2Ωsin(30◦) = 7.3 · 10−5s−1 and g = 9.81m · s−2, the value for the velocity v is
found to be v ≈ 1.92m · s−1. This value seems pretty reasonable and is close to peak
velocities measured in the Gulf Stream. Assuming that the velocity is independent of
z, the transport V is then given by the velocity times the cross-section area or

V = v ·∆x ·H = 1.92m · s−1 ·70km ·2km ≈ 269 ·106m3 · s−1, (7)
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We can convert our result to Sverdrup (Sv) where 1Sv = 106m3 · s−1, so that the trans-
port found for the Gulf Stream is 269Sv. . . this is a very large value! The transport of
water in the Gulf Stream is assumed to vary between 30Sv in the Florida Current and
150Sv downstream of Cape Hatteras (large value due to the recirculation in the gyre,
we will talk about it in our lectures about western boundary currents). Our value for the
transport is so different than the observations mostly because we assumed the velocity
to be independent of z and x (you can look at Figure 7.4 p141 in Knauss for a plot of
the velocity as function of depth and longitude in the Gulf Stream).
For the ACC (flowing eastward) we will assume that the flow is only zonal (in the East-
West direction), meaning that we will consider only the y-momentum equation, such
that

f u = −
1
ρ0

∂p
∂y

(8)

We will repeat the same exercise done previously for the Gulf Stream, assuming in this
case that h is a function of y only and find that the velocity is given by

u = −
g
f

∂h
∂y

(9)

For the ACC, ∂h/∂y = ∆SSHACC/∆y = 1m/700km (the sea surface height increases
northward), and f = 2Ωsin(−60◦) = −1.26 · 10−4s−1, the velocity u is found to be
u≈ 0.11m ·s−1 which is close to the observed values (note that the velocity is positive in
agreement with the fact that the ACC is flowing eastward). Assuming that the velocity
is independent of depth, the water transport U by the ACC is given by

U = u ·∆y ·H = 0.11m · s−1 ·700km ·4km ≈ 310 ·106m3 · s−1, (10)

The volume transport near the Drake Passage is believed to be around 150Sv. It is again
a very large value for the volume transport and it is due to the fact that we assumed the
velocity to be independent of depth.

2. Why the centrifugal force is negligible compared to Coriolis?

Consider the case where a fluid parcel is at rest in a reference frame rotating with the Earth.
The parcel feels a centrifugal force equal to Ω2~r, where Ω is the angular velocity of the Earth
and~r is the position vector from the axis of rotation. The centrifugal force directed radially
outward partially balances the gravitational force directed toward the center of the Earth.
We can then combine the gravity~g and the centrifugal force Ω2~r, as a result the gravitational
force every fluid parcel feels is changed due to the centrifugal acceleration. The Earth also
changes his shape to compensate this centrifugal force, the Earth is not a perfect sphere but
more a spheroid with a bulge at the equator. The changes due to the centrifugal force are very
small compared to g as shown in class where |Ω2r| ≈ 0.0341 << g = 9.81, in addition they
do not depend on the velocity of the fluid at all but only on the position vector and therefore
has only small influence on the dynamics of the flow.

Consider now a fluid parcel moving with respect to the rotating reference frame, as seen in
class an additional force appears: the Coriolis force, perpendicular to the velocity (2Ω×
~u). For simplicity let assume that the fluid parcel is moving eastward only. Due to the
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eastward motion, the centrifugal force acting on the parcel will be increased such that the
total centrifugal force is given by

(

Ω+
u
r

)2
~r = Ω2~r +2

Ωu~r
r

+
u2~r
r2 (11)

= Ω2~r +2Ωur̂ +
u2r̂
r

(12)

where u is the velocity of the parcel relative to the ground. As described previously, the
term Ω2~r is the centrifugal force due to the rotation of the Earth which was already included
in gravity and assumed to have only small influence on the dynamics. The 2nd term is
the Coriolis force, and the 3rd term is the centrifugal acceleration due to the motion of
the flow. Comparing the 2nd and the 3rd term for large scale flows, we find that 2Ωu =
O(103) >> u2/r−1 = O(10−9). We can then neglect the centrifugal acceleration compared
to the Coriolis force for the motion of large scale flows.

3. Challenge problem: The tank of water rotates around its vertical axis with an angular velocity
Ω. We assume that no external forces are acting on the system. The momentum equation in
a rotating reference frame in vector form is given by

d~u
dt

+2~Ω×~u+~Ω×~Ω×~r = −
1
ρ

∇p−gẑ (13)

The water is assumed to rotate with the tank, equivalent to a solid body rotation where the
velocity of the water is 0 relative to the tank (i.e, the fluid parcels have zero velocity in the
rotating frame) ⇒~u = 0. The momentum equation is then reduced to

~Ω×~Ω×~r = −
1
ρ

∇p−gẑ (14)

The centrifugal force −~Ω×~Ω×~r is directed radially outward and can be expressed as the
gradient of a potential such that

−~Ω×~Ω×~r = ∇
(

Ω2r2

2

)

(15)

We can similarly write the gravity as the gradient of a potential

∇(gz) = gẑ (16)

and the shape of the water at the surface is given by

1
ρ

∇p+∇
(

gz−
Ω2r2

2

)

= 0 (17)

The previous equation is similar to the hydrostatic balance (vertical pressure gradient bal-
ances gravity) but applies to a rotating system (adding to the centrifugal forces). Assuming
that the density ρ is constant, the previous equation is satisfied if everywhere in the fluid we
have

p
ρ

+gz−
Ω2r2

2
= C (18)
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where C is a constant. The pressure p(r,z) is given by

p(r,z) = −ρgz+ρ
Ω2r2

2
+C (19)

Using the boundary condition p = 0 at the surface of the water z = h(x,y) = h(r),

0 = −ρgh(r)+ρ
Ω2r2

2
+C (20)

such that

h(r) =
Ω2r2

2g
+

C
ρg

= h(0)+
Ω2r2

2g
(21)

where h(0) = C
ρg is the height of the fluid in the middle of the bucket.

The equation for the surface of the fluid tells us that the surface of the water has a parabolic
shape with a minimum at the center of the tank. We can see that the vector −~Ω×~Ω×~r−gẑ
is always be perpendicular to the surface. The centrifugal force and the gravity act together
in order to produce a force normal to the surface of the fluid and this net force will balance
the pressure gradient at the surface of the water.
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