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‘Before and after’ Glacier images

Columbia Glacier, Alaska, August 28, 2009. Columbia Glacier, Alaska, June 22, 2015

https://www.reddit.com/r/pics/comments/3t1ij5p/columbia glacier alaska august 28 2009 columbia/

Left photograph by James Balog, right photograph by Matthew Kennedy © Earth Vision Institute
nationalgeographic.com/



https://www.reddit.com/r/pics/comments/3t1j5p/columbia_glacier_alaska_august_28_2009_columbia/
http://nationalgeographic.com/
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‘Before and after’ Glacier images

Stein Glacier, Switzerland, has retreated by 550 m between 2006 and 2015

James Balog and the extreme ice survey

https://newatlas.com/before-after-photos-glaciers-climate-change/49143/
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‘Before and after’ Glacier images
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Qori Kalis Glacier in Peru has retreated by 1.14 km between 1978 and 2016

Lonnie Thompson

https://newatlas.com/before-after-photos-glaciers-climate-change/49143/
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‘Before and after’ G\amer mages
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Thnﬁ GIaC|er valtzerland has retreated by 1.17 km between 2006 and 2015

James Balog and the extreme ice survey

https://newatlas.com/before-after-photos-glaciers-climate-change/49143/
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Videos

Climate Change Shrinking Mountain WA Glaciers
https://www.youtube.com/watch?v=ct-FptrxO-8

Africa’s First Mountains To Lose Their Glaciers
https://www.thestoryinstitute.com/rwenzori-mountains

Half of All Mountain Glaciers Are Expected to Disappear by 2100/Glacial floods
https.//www.scientificamerican.com/article/half-of-all-mountain-glaciers-are-
expected-to-disappear-by-2100/



https://www.youtube.com/watch?v=ct-FptrxO-8
https://www.thestoryinstitute.com/rwenzori-mountains
https://www.scientificamerican.com/article/half-of-all-mountain-glaciers-are-expected-to-disappear-by-2100/
https://www.scientificamerican.com/article/half-of-all-mountain-glaciers-are-expected-to-disappear-by-2100/
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Workshop 1 a, b (leave ¢ for HW)

Glacier lengths records
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Example glacier length records
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Figure 1.4: Records of glacier length for a few mountain
glaciers, relative to their length in 1960.



Figure 11.1: Glacier length time
series for 879 records, relative to
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All glacier length time series

their position in 1960.

front location relative to 1960 (km)
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Figure 11.3: Showing all glaciers
with observed edge location time
series, marking the 791 glaciers
with negative trends in red, and the
29 with positive trends in blue. The
blue symbols are drawn on top of
the red ones, assuring that the few
locations with positive trends are
clearly highlighted.
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Averaged/binned length records
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Figure 11.2: (a) A bin-average of the glacier length records seen in Fig. 11.1. (b)
The number of observations per bin.
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Are glaciers retreating due to end of little ice age”?

Global Average Temperature Change

"Medieval
*1.0°C 4 o "Litte
period" Ice age
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https://en.wikipedia.org/wiki/Little_Ice_Age
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Are glaciers retreating due to end of little ice age?

e - e il -y

@gm@gmm - Ao @ol; Bpgb ; , !
| 5 ,r")‘"gigi?:;{‘"“‘ f Ay & Gexnlande,” ¥ .
g _Grrnlande, \ AWNIB Y

8l

Erik the Red, was a Norse explorer, described in
medieval andlcelandic saga sources as having
founded the first settlement in Greenland.

https://en.wikipedia.org/wiki/Erik_the_Red

“The Norse colonies in Greenland starved and vanished by the early 15th century, as crops
failed and livestock could not be maintained through increasingly harsh winters. Greenland

was largely cut off by ice from 1410 to the 1720s.”
(https://en.wikipedia.org/wiki/Little Ice Age)



https://en.wikipedia.org/wiki/Norse_colonization_of_the_Americas
https://en.wikipedia.org/wiki/Greenland
https://en.wikipedia.org/wiki/Little_Ice_Age
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Are glaciers retreating due to end of little ice age?
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marriage at Hvalsey Church, now the best-
preserved of the Norse ruins.

https://en.wikipedia.org/wiki/Little_Ice_Age

Erik the Red, was a Norse explorer, described in
medieval andlcelandic saga sources as having
founded the first settlement in Greenland.

https://en.wikipedia.org/wiki/Erik_the_Red

“The Norse colonies in Greenland starved and vanished by the early 15th century, as crops
failed and livestock could not be maintained through increasingly harsh winters. Greenland

was largely cut off by ice from 1410 to the 1720s.”
(https://en.wikipedia.org/wiki/Little Ice Age)



https://en.wikipedia.org/wiki/Norsemen
https://en.wikipedia.org/wiki/Hvalsey_Church
https://en.wikipedia.org/wiki/Norse_colonization_of_the_Americas
https://en.wikipedia.org/wiki/Greenland
https://en.wikipedia.org/wiki/Little_Ice_Age
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ttle ice age?

Are glaciers retreating due to end of

The Frozen Thames, 1677

https://en.wikipedia.org/wiki/Little_Ice_Age
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of little ice age?
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Are glaciers retreating due to end

The Frozen Thames, 1677 B -
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Winter skating on the main canal of
Pompenburg, Rotterdam in 1825,
shortly before the minimum, by
Bartholomeus Johannes van Hove

https://en.wikipedia.org/wiki/Little_Ice_Age


https://en.wikipedia.org/wiki/Rotterdam
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Are glaciers retreating due to end of little ice age?
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The Frozen Thames, 1677

Winter skating on the main canal of
Pompenburg, Rotterdam in 1825,
shortly before the minimum, by
Bartholomeus Johannes van Hove

https://en.wikipedia.org/wiki/Little_Ice_Age


https://en.wikipedia.org/wiki/Rotterdam
https://en.wikipedia.org/wiki/Hendrick_Avercamp

Global Warming Science 101, Mountain glaciers, Eli Tziperman

Consider four lines of evidence that the observed
glacier retreat during recent decades is not due
to the end of the little ice age:



Global Warming Science 101, Mountain glaciers, Eli Tziperman

Consider four lines of evidence that the observed
glacier retreat during recent decades is not due
to the end of the little ice age:

1. Last-exposure dates from plants recovered under
melting glaciers.
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Consider four lines of evidence that the observed
glacier retreat during recent decades is not due
to the end of the little ice age:

1. Last-exposure dates from plants recovered under
melting glaciers.

2. Relation between temperature and glacier extent, and
deduced glacier adjustment time scale.
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Consider four lines of evidence that the observed
glacier retreat during recent decades is not due
to the end of the little ice age:

1. Last-exposure dates from plants recovered under
melting glaciers.

2. Relation between temperature and glacier extent, and
deduced glacier adjustment time scale.

3. Ice cores: Glacier isotopic records and recent melt
events.
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Consider four lines of evidence that the observed
glacier retreat during recent decades is not due
to the end of the little ice age:

1. Last-exposure dates from plants recovered under
melting glaciers.

2. Relation between temperature and glacier extent, and
deduced glacier adjustment time scale.

3. Ice cores: Glacier isotopic records and recent melt
events.

4. Mountain glaciers’ flow and adjustment time scale to
temperature/Surface Mass Balance (SMB) changes.
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Are glaciers retreating due to end of little ice age”

First line of evidence:
Last-exposure dates from recovered plants
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Last-exposure dates from recovered plants

1 Glaciers

A Huarapasca
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Fig. 2. Glacier retreat as documented in the
Peruvian Andes. (A) Retreat of Qori Kalis
from 1963 to 2005. (B) Retreat records for
Qori Kalis and six other Andean glaciers. (C)
The photos document the expansion of the
proglacial lake from 1991 to 2005 as Qori
Kalis retreated.

Abrupt tropical climate change: Past and present

Lonnie G. Thompson*'#, Ellen Mosley-Thompson*%, Henry Brecher*, Mary Davis*, Blanca Leo” nY, Don Les®, Ping-Nan Lin*, Tracy Mashiotta*, and Keith Mountain** PNAS, 2006
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Last-exposure dates from recovered plants
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Fig. 7. The plant Distichia muscoides

(5,1381=45 yr B.P.) collected at the
retreating margin of the Quelccaya ice
cap in August of 2002 is compared with
the modern plant (see Table 1 for dates
on this and other plants).

Fig. 2. Glacier retreat as documented in the
Peruvian Andes. (A) Retreat of Qori Kalis
from 1963 to 2005. (B) Retreat records for
Qori Kalis and six other Andean glaciers. (C)
The photos document the expansion of the
proglacial lake from 1991 to 2005 as Qori
Kalis retreated.

Abrupt tropical climate change: Past and present

Lonnie G. Thompson*'#, Ellen Mosley-Thompson*%, Henry Brecher*, Mary Davis*, Blanca Leo” nY, Don Les®, Ping-Nan Lin*, Tracy Mashiotta*, and Keith Mountain** PNAS, 2006
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L ast exXposure dates from recovered p‘aﬂtS
Table 1 Sample locations and 14C ages
Site # Sample ID 14C age () 14C + 15 (yr) Cal age (yr) +16 (yr)
1 M13-BO02v >43,300 - - -
2 M13-BOO5v >48,370 - - -
2 M13-BO07v >45,277 - - -
3 M13-BO11v 43,770 4670 45,443 +4557/-1177
3 M14-B101v >46,320 - - -
4 M13-B0O18v >45277 - - -
5 M13-B028v >45,277 - - -
6 M13-B045v >49,990 - - -
7 M13-BO51v >45,277 - - -
7 M13-BO52v >47,000 - - -
7 M14-B139v >44.940 - - -
8 M13-B0O55v >45,277 - - -
9 M13-BO64v 41,800 3250 45171 +2893/—-2420
10 M13-BO66Vv 45,830 1770 48,199 +1801/-520
10 M13-BO69v >47,800 - - -
1 M13-B094v 48,850 2570 48,491 +1509/—-390
1 M13-BO91v 45,240 2570 47,449 +2551/—730
17ab M10-B258v 34,300 3600 38,214 +3662/—-3200
11ab M10-B258v 39,740 950 43,550 +689/-810
11ab M10-B258v 37,510 490 41,880 +380/-320
12 M13-B104v >45,277 - - -
12ab M10-B231v 29,100 1500 33,094 +1265/-1600
12ab M10-B231v 44,300 1300 47,570 +1306/—-1280
12ab M10-B231v 23,920 100 27,959 +97/-150
12ab M10-B232v 37,500 3600 41,194 +3738/-3110
13 M13-B195v 52,120 3860 48,226 +1774/—-460
13 M13-B196v 42,100 1270 45,545 +1080/-1280
14 M13-B201v 50,300 3080 48,419 +1581/—410
15 M14-B0O20v >45,650 - - -
16 M14-BO85v 39,280 1230 43,228 +910/-980
17 M14-B107v >46,320 - - -
b b 4l 18 M14-B113v >46,320 - - -
Fig. 1 Map showing sample localities on 0 1451430 S4e390 : : )
. . . . 20 M14-B154v >45,980 - - -
eastern Baffin Island. White circles indicate o1 M14-B158v ~46320 ] ] _
. .. 22 M14-B163v >46,380 - - -
locations of plant samples, squares indicate 23 M14-B164v >45,220 - - :
. . . . 23 M14-B165V 46,120 2870 47,592 +2408/-690
locations with both plant and rock (in situ 24 M B1Eay 45780 2750 47,549 +2451/-700
4 M14-B184v >46,320 - - -
. 14 . . 25 M15-B047v >47,000 - - -
cosmogenic 14C) samples. Site a is an 2 M15-B048v 44,400 i i i
. . . 263b M10-B247v 45,600 2500 47,636 +2364/—-680
unglaciated steep-sided summit where only 27 MI0-B255v 43,200 2700 46338 +2541/-1830
. 272b M10-B256v 50,700 3100 48,468 +1532/—-390
. . 28 M14-BO09v 44,200 1850 47,303 +1842/-1370
rock was sampled (imagery: Google Earth: 28 M14-8009y 44200 ! : ¥
. ) S ~ _ _
Image IBCAOQO, Landsat/Copernicus) > M Ber 20768
All plant samples were collected between 2010 and 2015 (yerenoted by sample ID prefix, M10-, M13-, etc.). Samples with > are minimum limiting ages and indistinguishable from the
organic measurement blank. All other samples are also reporte§in calibgffted years BP using IntCal 2013 and OxCal 4.2.4°0.5, For sample metadata see Supplementary Table 1
aFrom Miller et al.”
bReceived only deionized water pretreatment

Rapidly receding Arctic Canada glaciers revealing landscapes
continuously ice-covered for more than 40,000 years (rendiston et al, 2019)
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Last-exposure dates from recovered plants
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Fig. 1. Location of study site. (A) Map of the Canadian High Arctic
and northwest Greenland with ice cover in white. Teardrop Glacier,
Sverdrup Pass, Ellesmere Island, Nunavut, is indicated by a red arrow.
(B) Oblique aerial view (from the north) of Teardrop Glacier, July
2009. Light-toned perimeter (white arrows) marks the trimline at the
limit of the LIA advance. Subglacial samples were collected between
the Xs (red) within 10 m of glacial margin.

Regeneration of Little Ice Age bryophytes emerging from a polar glacier with

implications of totipotency in extreme environments, 2013, PNAS
Catherine La Farge@.1, Krista H. Williams?2, and John H. England®
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Last-exposure dates from recovered plants

——

2 ) S e
Fig. 1. Location of study site. (A) Map of the Canadian High Arctic
and northwest Greenland with ice cover in white. Teardrop Glacier,

Sverdrup Pass, Ellesmere Island, Nunavut, is indicated by a red arrow.
(B) Oblique aerial view (from the north) of Teardrop Glacier, July

IR TONE e B gl 4
2009. Light-toned perimeter (white arrows) marks the trimline at the P R
limit of the LIA advance. Subglacial samples were collected between Fig. 2. Subglacial LIA bryophyte populations emerging
the Xs (red) within 10 m of glacial margin. from Teardrop Glacier margin. (A) Intact population of P.

alpinum at glacier margin. (Scale bar, 10 cm.) (B)
Corresponding detail of same P. alpinum population (red
arrow). (C) Populations of A. turgidum < 1 m from
glacier margin. (Scale bar, 20 cm). (D) Corresponding
detail of same of A. turgidum (red arrow) showing intact
stems and leaves.

Regeneration of Little Ice Age bryophytes emerging from a polar glacier with

implications of totipotency in extreme environments, 2013, PNAS
Catherine La Farge@.1, Krista H. Williams?2, and John H. England®
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Fig. 1. Location of study site. (A) Map of the Canadian High Arctic
and northwest Greenland with ice cover in white. Teardrop Glacier,
Sverdrup Pass, Ellesmere Island, Nunavut, is indicated by a red arrow.
(B) Oblique aerial view (from the north) of Teardrop Glacier, July
2009. Light-toned perimeter (white arrows) marks the trimline at the
limit of the LIA advance. Subglacial samples were collected between
the Xs (red) within 10 m of glacial margin.
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covered plant
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Fig. 2. Subglacial LIA bryophyte populations emerging
from Teardrop Glacier margin. (A) Intact population of P.
alpinum at glacier margin. (Scale bar, 10 cm.) (B)
Corresponding detail of same P. alpinum population (red
arrow). (C) Populations of A. turgidum < 1 m from
glacier margin. (Scale bar, 20 cm). (D) Corresponding
detail of same of A. turgidum (red arrow) showing intact
stems and leaves.

Fig 4. Examples of extant, pioneer species growing on exhumed

( 6 LIA plant material. (A) Extensive populations of LIA A. turgidum

4 used as a colonizing substrate for P. cavifolium (a common weedy
species) ~6 m from glacier margin. (B) P. cavifolium growing on

blackened mats of LIA populations ~10 m from glacier margin.

Regeneration of Little Ice Age bryophytes emerging from a polar glacier with
implications of totipotency in extreme environments, 2013, PNAS

Catherine La Farge@.1, Krista H. Williams?2, and John H. England®
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S84 Fig 4. Examples of extant, pioneer species growing on exhumed
§¥¥ LIA plant material. (A) Extensive populations of LIA A. turgidum
“el "84 used as a colonizing substrate for P. cavifolium (a common weedy
W88 species) ~6 m from glacier margin. (B) P. cavifolium growing on
blackened mats of LIA populations ~10 m from glacier margin.

Regration of Little Ice Age bryophytes emerging from a polar glacier with
implications of totipotency in extreme environments, 2013, PNAS
Catherine La Farge@.1, Krista H. Williams?2, and John H. England®
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Are glaciers retreating due to end of little ice age”

Second line of evidence:
Relation between temperature and glacier extent
and glacier adjustment time scale.
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Notes section 11.2.1

(1) Basics: Accumulation & ablation zones, equilibrium line

(2) SM

(3) Recons
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ructing temperature from glacier extent

use following slides
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Accumulation & ablation zones, equilibrium line

Zone of Accumulation

Equilibrium Line

\ Zone of Ablation

Glaciation, Michael E. Ritter

https://geo.libretexts.org/Bookshelves/Geography %28Physical%29/
The Physical Environment %28Ritter%29/19%3A Glacial Systems/19.01%3A Glaciation



https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation
https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation

Accumulation & ablation zones, equilibrium
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ne

Zone of Accumulation

Equilibrium Line

Zone of Ablation

SMB: Surface Mass

Balance: rate of show accumulation

minus surface melting/ ablation.


https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation
https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation
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Accumulation & ablation zones, equilibrium line

Glaciation, Michael E. Ritter

https://geo.libretexts.org/Bookshelves/Geography %28Physical%29/
The Physical Environment %28Ritter%29/19%3A Glacial Systems/19.01%3A Glaciation

Zone of Accumulation

Equilibrium Line
(Firn Line)

* N\ Zone of Ablation

SMB: Surface Mass Balance: rate of snhow accumulation

minus surface melting/ ablation.

PDD: positive degree days: an empirical measure of surface
ting rate: PDD = Z (T; = Tmei)Z (T; — Tmeit)

days (i)


https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation
https://geo.libretexts.org/Bookshelves/Geography_%28Physical%29/The_Physical_Environment_%28Ritter%29/19%3A_Glacial_Systems/19.01%3A_Glaciation
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Reconstructing temperature from glacier extent

Let the lacier length anomaly be L'; & local temperature anomaly e T°.
Assuming a simple linear relation between length & temperature

L' =—-cT

[Oerleman, 2005]
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Reconstructing temperature from glacier extent

Let the lacier length anomaly be L'; & local temperature anomaly e T°.
Assuming a simple linear relation between length & temperature

L' =—-cT

If the temperature changes too quickly to allow glacier lengths to
equiliorate at any given time, the glacier length continuously adjusts
toward its equiliorium with the changing atmospheric temperature, with a

typical timescale 7, dL’ (t) 1
= —— (L'(t) + cT'(¢

[Oerleman, 2005]
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Reconstructing temperature from glacier extent

Let the lacier length anomaly be L'; & local temperature anomaly e T°.
Assuming a simple linear relation between length & temperature

L' =-cT.
If the temperature changes too quickly to allow glacier lengths to

equiliorate at any given time, the glacier length continuously adjusts
toward its equiliorium with the changing atmospheric temperature, with a

typical timescale 7, dL/(t) 1
= —— (L'(¢t) + cT'(¢
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IS suggests,
, L dL(t)

[Oerleman, 2005]
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Reconstructing temperature from glacier extent

Let the lacier length anomaly be L'; & local temperature anomaly e T°.
Assuming a simple linear relation between length & temperature

L' =-cT.
If the temperature changes too quickly to allow glacier lengths to

equiliorate at any given time, the glacier length continuously adjusts
toward its equiliorium with the changing atmospheric temperature, with a

typical timescale 7, dL/(t) 1
= —— (L'(¢t) + cT'(¢
N === (L0 +T'(0))
IS suggests,
, L dL(t)

If the temperature changed abruptly to T(’) and then remained constant,
the differential equation may be solved,

L'(t) = (L, + cT(’))e_t/ *— T,

[Oerleman, 2005]
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Workshop #2:

Temperature and glacier length



Global Warming Science 101, Mountain glaciers, Eli Tziperman

Temperature reconstructed from glacier length
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Figure 11.5: Relating temperature to glacier length. (a) Globally and annually averaged surface
temperature (blue) and its smoothed version used for the analysis of glacier length and global
temperature (red). (b) The binned-average glacier length from Fig. 11.2a, interpolated to 1-year
resolution (blue) and smoothed (red). (c) The optimal solution for the global mean surface
temperature calculated from the binned glacier extent using egn (11.3) is shown in red, together
with the olbserved smoothed temperature redrawn from panel a, and with the equilibrium

temperature with the glacier length (dash, see text for details). Oerlenan, 2005]
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Temperature reconstructed from glacier length
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Fig. 1. Examples of glacier length records
from different parts of the world. Each dot
represents a data point. Data points are scarce
before 1900; after 1900 a considerable number
of records have annual resolution.

Oerleman, Extracting a Climate Signal from 169 Glacier Records; 2005
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Temperature reconstructed from glacier length

Fig. 2. (A) Number of records for the last 300 years. The decline after 1990 is due to a large
delay in the reporting and publishing of data in a suitable form. (B) Stacked records of glacier
length. Irregularities occur when a glacier with a large length change is added. However, this
. does not necessarily involve a large change in climatic conditions because glaciers exhibiting
large changes are normally those that have a large climate sensitivity (and thus respond in a

1 more pronounced way to, for instance, a temperature change). After 1900, the irregularities
disappear because the number of glaciers in the sample increases strongly.
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Oerleman, Extracting a Climate Signal from 169 Glacier Records; 2005
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Temperature reconstructed from glacier length

Fig. 2. (A) Number of records for the last 300 years. The decline after 1990 is due to a large
delay in the reporting and publishing of data in a suitable form. (B) Stacked records of glacier
length. Irregularities occur when a glacier with a large length change is added. However, this
. does not necessarily involve a large change in climatic conditions because glaciers exhibiting
large changes are normally those that have a large climate sensitivity (and thus respond in a

1 more pronounced way to, for instance, a temperature change). After 1900, the irregularities
disappear because the number of glaciers in the sample increases strongly.
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Are glaciers retreating due to end of little ice age”

Third line of evidence:
Glacier isotopic records and recent melt events
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Notes section 11.2.2
glacier ice cores: isotopic and melt records
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Workshop 4
Isotopic records from Quelccaya ice cores
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Glacier ice cores: isotopic records
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Figure 11.6: Isotopic records from the Quelccaya Ice Cap in the Andes, Peru
(latitude 13S). (a) Two high-resolution shallow ice cores showing the presence of
a seasonal cycle in 1976 (blue) and its elimination by surface melting and
percolation of melt water by the time the 2016 core was drilled (red). (b) A
decadal bin-average of a long record from the Quelccaya Summit Ice core. The
cyan shading indicates plus and minus one standard deviation for each decade.

[Data from Thompson et al., 2013; Thompson et al., 2017]
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Glacier ice cores: isotopic records
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Are glaciers retreating due to end of little ice age”

Fourth line of evidence:
Mountain glacier tlow and adjustment time to
temperature/SMB changes
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Glacier flow
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AK-05 Mendhenhall Glacier 2007-2017
ttps://vimeo.com/168243535 Extreme Ice Survey
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Glacier flow

GL-05 llulissat Glacier June 2007 - August 2017
https://vimeo.com/168243534 Extreme Ice Survey
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Notes section 11.4

Glacier dynamics
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Workshop 3:

|dealized glacier-length adjustment scenarios



Global Warming Science 101, Mountain glaciers, Eli Tziperman

|[dealized glacier-length adjustment scenarios
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Figure 11.4: Two idealized adjustment scenarios of glacier length based on solution (11.2),

assuming T = 15 years, and based on the initial lengths and perturbation temperatures
indicated.
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Glacier flow: steady response to two SMBs
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Figure 11.7: (a) Surface mass balance for two scenarios (solid blue vs dash red),
showing also the corresponding Equilibrium Line Altitudes (horizontal dash lines). (b)
The steady solution of the Shallow Ice Approximation for glacier height for the two
scenarios.

(Calculated using an ice flow code by Bueler, 2021)
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Glacier flow: time dependent adjustment to 2 SMBs
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Figure 11.8: The time-dependent transition between the blue and red solutions in
Fig. 11.7b. (a) Glacier thickness as function of horizontal thickness for different
times after the ELA changed from the blue to the red lines in Fig. 11.7a.
Progressing times are denoted by changing color of the thin lines from blue to
green to red. (b) Glacier length as function of time during the transition.

(Calculated using an ice flow code by Bueler, 2021)
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Glacier flow: time dependent adjustment to 2 SMBs
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Figure 11.8: The time-dependent transition between the blue and red solutions in
Fig. 11.7b. (a) Glacier thickness as function of horizontal thickness for different
times after the ELA changed from the blue to the red lines in Fig. 11.7a.
Progressing times are denoted by changing color of the thin lines from blue to
green to red. (b) Glacier length as function of time during the transition.

(Calculated using an ice flow code by Bueler, 2021)
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Glacier flow: time dependent adjustment to 2 SMBs

300 6.6 TN a\e O
~ 250 P eﬂ’ﬂ_ '\.\me ded\)@ d
gzoo- — . T1he ad‘\ugjﬂ.m p@(aﬂﬂe K(\g Oﬁ
S0 e te%\m 1O del ~gstent
CO“‘ o X0 cna deﬁmn NS ne cO - 10 Ne
9 e U 0 SO eepo™
nexe .“( \CS flow \\‘(\6 DOOS \d \%5
g\ac\e (e“ea i d@d bl nd red solutions in
\ \N\’ﬂ_\(\ A ;‘_\(\a'\_ 6 ~ 0N of horizontal thickness for different
\ e fOM the blue to the red lines in Fig. 11.7a.

y O\ V! __.esTe denoted by changing color of the thin lines from blue to
\ __~0Ted. (b) Glacier length as function of time during the transition.

(Calculated using an ice flow code by Bueler, 2021)



Global Warming Science 101, Mountain glaciers, Eli Tziperman

Mountain glaciers: summary
® A dramatic retreat, accelerating over the past decades.
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o Carbon-dated exposed plants of many 100s—1000s yrs ago,
long before the start of the little ice age.
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® A dramatic retreat, accelerating over the past decades.

® Plenty of evidence that this is
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Mountain glaciers: summary
® A dramatic retreat, accelerating over the past decades.

® Plenty of evidence that this is not a natural response to exit
from the little ice age:

o Carbon-dated exposed plants of many 100s—1000s yrs ago,
long before the start of the little ice age.

o Glacier length similar to global temperature: recent glacier
trends as unusual as recent warming observed independently

@ Accelerating retreat in recent decades Is in contrast to the
expected slowdown of response to little ice age 150 years ago.
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the past decades.

of evidence that this is not a natural response to exit
from the little ice age:

o Carbon-dated exposed plants of many 100s—1000s yrs ago,
long before the start of the little ice age.

o Glacier length similar to global temperature: recent glacier
trends as unusual as recent warming observed independently
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the 20th century is unusual within the past 1500 years or so.

< Surface melting seen in tropical ice cores in the 21st century
have not occurred in the previous many 100s—1000s yrs
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The End



