Introduction

Global Warming Science, EPS101

Eli Tziperman

https://courses.seas.harvard.edu/climate/eli/Courses/EPS101/
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Venice flooding, 2019

San Angelo, Texas, 2011

Time lapse of clouds: 2 hours in 2 min
Global Warming Science

A hands-on intro to the science of global warming and its consequences
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b
Global Warming Science
A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St
Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.
TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours
Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b
Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**
Global Warming Science
A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b

Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**

Class structure: alternating lecture and python work
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St
Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.
TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours
Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b
Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. Bring laptops.
Class structure: alternating lecture and python work
HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!
Global Warming Science
A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b

Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**

Class structure: alternating lecture and python work

HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!

Requirements:
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St
Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.
TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours
Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b
Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. Bring laptops.
Class structure: alternating lecture and python work
HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!
Requirements:
• Attend all course meetings
Global Warming Science
A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St
Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.
TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours
Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b
Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. Bring laptops.
Class structure: alternating lecture and python work
HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!
Requirements:
• Attend all course meetings
• In-class python: organize in pairs/groups, bring laptops, continue after class as needed
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b

Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**

Class structure: alternating lecture and python work

HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!

Requirements:

- Attend all course meetings
- In-class python: organize in pairs/groups, bring laptops, continue after class as needed
- A weekly 1-page writing assignment after class.
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b

Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**

Class structure: alternating lecture and python work

HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!

Requirements:

- Attend all course meetings
- In-class python: organize in pairs/groups, **bring laptops**, continue after class as needed
- A weekly 1-page writing assignment after class.
- Help other students during one week workshop (**coaching**): volunteers for next week!
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Time & location: Wednesday 3-5:45, HUCE seminar room 440, 4th floor, 26 Oxford St

Instructor: Eli Tziperman, eli@eps.harvard.edu; office hours: M & W 1–2; see web page.

TFs: Andrea Salazar, and Kirstin Koepnick, please see canvas for office hours

Prerequisites: differential equations, e.g., Math 21b, Math 19a, Math 1b

Programming: Basic exposure to programming assumed, students will be provided with code as of easy-to-use Jupyter notebooks and be closely guided. **Bring laptops.**

Class structure: alternating lecture and python work

HW help sessions: weekly, Tuesdays 5–7. Come to get help and help others!

Requirements:
- Attend all course meetings
- In-class python: organize in pairs/groups, bring laptops, continue after class as needed
- A weekly 1-page writing assignment after class.
- Help other students during one week workshop (**coaching**): volunteers for next week!

Grading: Writing tasks/workshops/presentations: 70%; coaching: 15%; Participation: 15%
Global Warming Science

A hands-on intro to the science of global warming and its consequences

Class overview
1. **Greenhouse** effect: why is CO$_2$ causing warming? How and how much?
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The basics

1. **Greenhouse** effect: why is CO$_2$ causing warming? How and how much?

2. **Temperature**: how much is/ will it warm? Was there a hiatus? Why more in the Arctic? Climate sensitivity/ role of the ocean?
1. **Sea level** rise: is it rising? Accelerating? Will it accelerate? Global vs. local effects.

![Graph showing sea level rise](image)
1. **Sea level** rise: is it rising? Accelerating? Will it accelerate? Global vs. local effects.

2. **Ocean acidification**: the other CO₂ problem! The chemistry, effects on ocean life
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The oceans

1. **Sea level** rise: is it rising? Accelerating? Will it accelerate? Global vs. local effects.
2. **Ocean acidification**: the other CO$_2$ problem! The chemistry, effects on ocean life
3. **Ocean circulation**: is it collapsing? will it? The day after tomorrow! why?

![Graph showing sea level rise](image1)

Figure 1.1: Greenhouse, warming, and sea level rise. Beginning with greenhouse gases, the blue line in Figure 1.1a shows the iconic Mauna Loa CO$_2$ record collected since 1958, preceded by an ice-core based reconstruction. CO$_2$ concentration has been at 280 ppm for over 10,000 years, since the last ice age, and has therefore increased by about 50% so far, at an unprecedented speed. There is, of course, no doubt that CO$_2$ is increasing and that the increase is attributable to anthropogenic burning of fossil fuel. Once in the atmosphere, we will see that it will take thousands of years for the CO$_2$ to naturally decline after anthropogenic emissions are eliminated. Chapter 2 addresses the question...
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The atmosphere

1. **Hurricanes**: are they already getting stronger, how do they work, why we expect them to strengthen, analyzing past data, predicting future strength
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The atmosphere

1. **Hurricanes**: are they already getting stronger, how do they work, why we expect them to strengthen, analyzing past data, predicting future strength

2. **Clouds**: why are they the biggest source of uncertainty in predictions?
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The cryosphere

1. **Greenland & Antarctica**: how will they respond? Instabilities, ice stream acceleration

![Image of cryosphere]
Global Warming Science

A hands-on intro into the science of global warming and its consequences

The cryosphere

1. **Greenland & Antarctica**: how will they respond? Instabilities, ice stream acceleration
2. **Arctic sea ice**: the canary in the coal mine. Why has it melted so much? What next?
Global Warming Science
A hands-on intro into the science of global warming and its consequences

The cryosphere

1. Greenland & Antarctica: how will they respond? Instabilities, ice stream acceleration
2. Arctic sea ice: the canary in the coal mine. Why has it melted so much? What next?
3. Mountain glaciers: why have they been retreating so dramatically?
Global Warming Science
A hands-on intro into the science of global warming and its consequences

Consequences of warming

1. **Droughts**: what's causing them, will they get more frequent? Stronger? less? Why?
Global Warming Science
A hands-on intro into the science of global warming and its consequences

Consequences of warming

1. **Droughts**: what's causing them, will they get more frequent? Stronger? less? Why?
2. **Heat waves**: what's causing them, how do we understand their change with climate?

That Siberian Heat Wave? Yes, Climate Change Was a Big Factor
An analysis of recent record temperatures found that climate change made this year’s long hot spell 600 times more likely.

NYTimes, 2020
Global Warming Science
A hands-on intro into the science of global warming and its consequences

Consequences of warming

1. **Droughts**: what's causing them, will they get more frequent? Stronger? less? Why?
2. **Heat waves**: what's causing them, how do we understand their change with climate?
3. **Forest fires**: which ones are increasing? related to anthropogenic warming?

That Siberian Heat Wave? Yes, **Climate Change Was a Big Factor**
An analysis of recent record temperatures found that climate change made this year's long hot spell 600 times more likely.
NYTimes, 2020
1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.
1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.
Writing assignment & Jupyter python workshop

1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.
Writing assignment & Jupyter python workshop

1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.
Writing assignment & Jupyter python workshop

1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.
Writing assignment & Jupyter python workshop

1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.

6. Discuss strengths, weaknesses & uncertainty of available observations, analyses & predictions.
1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.

6. Discuss strengths, weaknesses & uncertainty of available observations, analyses & predictions.

7. Use the guiding questions, but don’t restrict yourself to them. Think broadly.
1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT's summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.

6. Discuss strengths, weaknesses & uncertainty of available observations, analyses & predictions

7. Use the guiding questions, but don’t restrict yourself to them. Think broadly.

8. You may use technical terms after defining them. It is OK to use standard statistical terminology.
1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.

6. Discuss strengths, weaknesses & uncertainty of available observations, analyses & predictions.

7. Use the guiding questions, but don’t restrict yourself to them. Think broadly.

8. You may use technical terms after defining them. It is OK to use standard statistical terminology.

9. Conclude with a brief reasoned statement of the position you personally recommend the adviser take in public presentations on this issue.
Writing assignment & Jupyter python workshop

1. Ask chatGPT to write a 250-word summary of the state of knowledge of the topic covered. Prompt it to address the points under (5) below.

2. Then, write a one-page summary (single space, 12pt) using the following guidelines, including an explicit criticism/endorsement of chatGPT’s summary based on what we covered in class.

3. Your target audience: the President’s science adviser, a scientist but not a climate scientist.

4. Write based on material covered in class, workshop results, guiding questions, and your research.

5. Introduce the issue and the motivation, discuss any changes observed so far, the worst case scenario for 2100, uncertainty, and the mechanisms/feedbacks that take place or are expected to take place so that the adviser can understand the reason for the observed/expected changes.

6. Discuss strengths, weaknesses & uncertainty of available observations, analyses & predictions.

7. Use the guiding questions, but don’t restrict yourself to them. Think broadly.

8. You may use technical terms after defining them. It is OK to use standard statistical terminology.

9. Conclude with a brief reasoned statement of the position you personally recommend the adviser take in public presentations on this issue.

10. Submit two PDF files with writing and Jupyter workshop solution notebook (all cells evaluated in order, downloaded as pdf) via GradeScope by Wednesday at 2 pm.
“The great global warming swindle”

Learning to deal with criticism…
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO$_2$”.
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were periods with 10 times as much CO₂, we should see the consequences in the geologic record.
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were periods with 10 times as much CO₂, we should see the consequences in the geologic record
4. None of the major climate changes of the last 1000 years can be explained by CO₂
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were period with 10 times as much CO₂, we should see the consequences in the geologic record
4. None of the major climate changes of the last 1000 years can be explained by CO₂
5. The current warming is due to coming out of the little ice age (1600)
1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO\textsubscript{2}”.
3. There were period with 10 times as much CO\textsubscript{2}, we should see the consequences in the geologic record
4. None of the major climate changes of the last 1000 years can be explained by CO\textsubscript{2}
5. The current warming is due to coming out of the little ice age (1600)
6. Medieval warm period (1200) was a time of prosperity
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were period with 10 times as much CO₂, we should see the consequences in the geologic record
4. None of the major climate changes of the last 1000 years can be explained by CO₂
5. The current warming is due to coming out of the little ice age (1600)
6. Medieval warm period (1200) was a time of prosperity
7. Most warming occurred in the early 20 century, before CO₂
1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were period with 10 times as much CO₂, we should see the consequences in the geologic record.
4. None of the major climate changes of the last 1000 years can be explained by CO₂.
5. The current warming is due to coming out of the little ice age (1600).
6. Medieval warm period (1200) was a time of prosperity.
7. Most warming occurred in the early 20 century, before CO₂.
8. CO₂ forms only a very small part of the earth’s atmosphere (ppm).
Claims made in the great global warming swindle: 1/3

1. We are told that global warming is proved beyond any doubt – lies!
2. “I believe in global warming, but not that it’s us or CO₂”.
3. There were period with 10 times as much CO₂, we should see the consequences in the geologic record
4. None of the major climate changes of the last 1000 years can be explained by CO₂
5. The current warming is due to coming out of the little ice age (1600)
6. Medieval warm period (1200) was a time of prosperity
7. Most warming occurred in the early 20 century, before CO₂
8. CO₂ forms only a very small part of the earth’s atmosphere (ppm)
9. CO₂ never drove climate in the past
Claims made in the great global warming swindle: 2/3

10. Nothing special about current climate, Earth temp always changing
10. Nothing special about current climate, Earth temp always changing
11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor
Claims made in the great global warming swindle: 2/3

10. Nothing special about current climate, Earth temp always changing
11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor
12. mid-tropospheric warming expected in theory but not found in data ➔ warming happened at wrong time (early 20c) and place (surface)
10. Nothing special about current climate, Earth temp always changing

11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor

12. mid-tropospheric warming expected in theory but not found in data ➔ warming happened at wrong time (early 20c) and place (surface)

13. Ice cores show that temperature leads CO2 by 800 years
10. Nothing special about current climate, Earth temp always changing
11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor
12. mid-tropospheric warming expected in theory but not found in data → warming happened at wrong time (early 20c) and place (surface)
13. Ice cores show that temperature leads CO2 by 800 years
14. Humans are a minute effect relative to the sun…
10. Nothing special about current climate, Earth temp always changing
11. CO\textsubscript{2} is a very minor greenhouse gas, much smaller than water vapor
12. mid-tropospheric warming expected in theory but not found in data → warming happened at wrong time (early 20c) and place (surface)
13. Ice cores show that temperature leads CO2 by 800 years
14. Humans are a minute effect relative to the sun…
15. Solar activity/ sun spots very strongly correlated with temperature
10. Nothing special about current climate, Earth temp always changing

11. CO\textsubscript{2} is a very minor greenhouse gas, much smaller than water vapor

12. mid-tropospheric warming expected in theory but not found in data \(\Rightarrow\) warming happened at wrong time (early 20c) and place (surface)

13. Ice cores show that temperature leads CO\textsubscript{2} by 800 years

14. Humans are a minute effect relative to the sun…

15. Solar activity/ sun spots very strongly correlated with temperature

16. Sun affects cloud formation via the modulation of cosmic rays
Claims made in the great global warming swindle: 2/3

10. Nothing special about current climate, Earth temp always changing
11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor
12. mid-tropospheric warming expected in theory but not found in data ➔ warming happened at wrong time (early 20c) and place (surface)
13. Ice cores show that temperature leads CO2 by 800 years
14. Humans are a minute effect relative to the sun…
15. Solar activity/ sun spots very strongly correlated with temperature
16. Sun affects cloud formation via the modulation of cosmic rays
17. In the 70s, experts warned of a global ice age coming soon
10. Nothing special about current climate, Earth temp always changing
11. CO$_2$ is a very minor greenhouse gas, much smaller than water vapor
12. Mid-tropospheric warming expected in theory but not found in data → warming happened at wrong time (early 20c) and place (surface)
13. Ice cores show that temperature leads CO2 by 800 years
14. Humans are a minute effect relative to the sun…
15. Solar activity/ sun spots very strongly correlated with temperature
16. Sun affects cloud formation via the modulation of cosmic rays
17. In the 70s, experts warned of a global ice age coming soon
18. Climate models are based on hundreds of assumptions, all it takes is for one assumption to be wrong, and the forecast is useless
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.
20. Warming \Rightarrow smaller EPTD \Rightarrow less storminess, not more hurricanes
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.
20. Warming => smaller EPTD => less storminess, not more hurricanes
21. You can get anything with a model by tweaking a parameter
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.

20. Warming \Rightarrow smaller EPTD \Rightarrow less storminess, not more hurricanes

21. You can get anything with a model by tweaking a parameter

22. Models give wild speculation the appearance of respectable science
Claims made in the great global warming swindle: 3/3

19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.
20. Warming \Rightarrow smaller EPTD \Rightarrow less storminess, not more hurricanes
21. You can get anything with a model by tweaking a parameter
22. Models give wild speculation the appearance of respectable science
23. Sea level rises only because of warming, not melting, will take a very long time.
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.

20. Warming => smaller EPTD => less storminess, not more hurricanes

21. You can get anything with a model by tweaking a parameter

22. Models give wild speculation the appearance of respectable science

23. Sea level rises only because of warming, not melting, will take a very long time.

24. Tropical diseases (Malaria) won't spread northward: mosquitoes are not tropical. There were serious malaria breakouts in Russia.
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.

20. Warming \Rightarrow smaller EPTD \Rightarrow less storminess, not more hurricanes

21. You can get anything with a model by tweaking a parameter

22. Models give wild speculation the appearance of respectable science

23. Sea level rises only because of warming, not melting, will take a very long time.

24. Tropical diseases (Malaria) won’t spread northward: mosquitoes are not tropical. There were serious malaria breakouts in Russia.

25. Greenland was much warmer 1000 years ago, and did not melt.
Claims made in the great global warming swindle: 3/3

19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.
20. Warming => smaller EPTD => less storminess, not more hurricanes
21. You can get anything with a model by tweaking a parameter
22. Models give wild speculation the appearance of respectable science
23. Sea level rises only because of warming, not melting, will take a very long time.
24. Tropical diseases (Malaria) won't spread northward: mosquitoes are not tropical. There were serious malaria breakouts in Russia.
25. Greenland was much warmer 1000 years ago, and did not melt
26. Permafrost under Russian forests melted much more 7000yrs ago
19. Models assume CO2 is the main cause for climate change, rather than sun or clouds.

20. Warming => smaller EPTD => less storminess, not more hurricanes.

21. You can get anything with a model by tweaking a parameter.

22. Models give wild speculation the appearance of respectable science.

23. Sea level rises only because of warming, not melting, will take a very long time.

24. Tropical diseases (Malaria) won’t spread northward: mosquitoes are not tropical. There were serious malaria breakouts in Russia.

25. Greenland was much warmer 1000 years ago, and did not melt.

26. Permafrost under Russian forests melted much more 7000yrs ago.

27. Ice in Antarctica always breaks off and melts, news only because of satellite data. Ice is always moving. Happens every spring.
1. There is no consensus among climate scientists
2. The IPCC and its final conclusions are political
3. Climate scientists needs [the] problem in order to get funding
4. Thatcher fought oil&coal workers, promoted nuclear power, & funded global warming
5. Environmentalists won all their battles, adopted global warming to remain revolutionary
6. Social activists needed new tool against capitalism, post communism
7. Money poured into research area attracted people whose only interest is global warming
8. Principles of journalism abandoned because with no global warming environmental journalists will loose their jobs
9. IPCC reports distorted & inconsistent with peer review, without coauthor approval.
10. Global warming is a new religion opponents are viewed as heretics
11. Policies against global warming have a disastrous effect on the poor
13. If the rich developed world cannot afford expensive sustainable energy, neither can the developing world
workshop: introduction to python

TODO now:

• Go to EPS101 course Canvas site -> FAS on demand -> start Jupyter server.

 • [Alternatively, hopefully not needed: install the latest anaconda from https://www.anaconda.com/products/individual#download-section]

• Download the 1st-class python code and data set from canvas: introducing_python.ipynb, introducing_python_variables.pickle

• Upload both files to Jupyter server and star going over the workshop.
Starting the Jupyter notebook via FAS on demand on Canvas