Global Warming Science 101, Ice sheets, Wanying Kang and Eli Tziperman

Ice sheets

Global Warming Science, EPS101

Wanying Kang and Eli Tziperman

https://courses.seas.harvard.edu/climate/eli/Courses/EPS101/



https://courses.seas.harvard.edu/climate/eli/Courses/EPS101/

Global Warming Science 101, Ice sheets, Wanying Kang and Eli Tziperman

lce sheets: why we care
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Figure TS.3 | (Upper) Distribution of ice loss from Gravity Recovery and Climate Experiment
(GRACE) time-variable gravity for (a) Antarctica and (b) Greenland, shown in cm of water per year
for the period 2003-2012. (Lower) The assessment of the total loss of ice from glaciers and ice
sheets in terms of mass (Gt) and sea level equivalent (mm). The contribution from glaciers
excludes those on the periphery of the ice sheets.

Cumulative ice mass loss (Gt)
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lce sheets: why we care
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Figure 4.17 | Rate of ice sheet loss in sea level equivalent averaged over
5-year periods between 1992 and 2011. These estimates are derived from
the data in Figures 4.15 and 4.16.

Greenland & Antarctica contributions to GMSL accelerate
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Antarctic ice mass loss observations

GRACE Observations of Antarctic Ice Mass Changes
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Measuring the ice mass of Greenland & Antarctica from space: GRACE
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The twin GRACE-FO satellites follow each other in
orbit around the Earth, separated by about 220
km.

https://grace.jpl.nasa.gov/mission/grace-fo/
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Greenland ice loss observations

GRACE Observations of Greenland Ice Mass Changes
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Greenland ice loss observations
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Greenland Calving event, “Chasing ice” film

Glacier Watching Day17 - .
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https://www.youtube.com/watch?v=hC3VTglPoGU
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workshop #1:
Olbservations and projections
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lce sheet SMB regimes:
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Surface mass balance versus temperature.

Schematic of accumulation (blue), surface ablation (red), and net surface mass balance (green)
as a function of surface atmospheric temperature. After Oerleman 1992.
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Notes section 10.3:
observed trends and projections
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Present observations
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Both Greenland and Antarctica show mass loss, although it is not clear to what
degree this is due to natural variability, and the prediction for Antarctica suggests
mass gain, at least via SMB, in the next few decades
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RCP8.5 projections of surface mass balance changes over Greenland &
Antarctica. (a) net SMB change from 1920 to 2100, cm/yr, averaged over 30 model
ensemble members. calculated as change in snow accumulation minus in
sublimation rate. blue shades: a gain in SMB. (b) Same, for Greenland. (c) blue line:
time series of net SMB for AlS, Gt/yr, avg over 30 members. light-blue shading: 1
std over members. red line & shading: sublimation. (d) Same, for Greenland.
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Notes section 10.2
Physical processes determining
the iIce mass balance
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Box 5.2, Figure 1 | Schematic illustration of multiple interactions between ice sheets, solid earth and the climate system which
can drive internal variability and affect the coupled ice sheet—climate response to external forcings on time scales of months to
millions of years. The inlay figure represents a typical height profile of atmospheric temperature and moisture in the

troposphere.



Global Warming Science 101, Ice sheets, Wanying Kang and Eli Tziperman

Accumulation
accumulation & ablation zones on ice sheets/ glaciers

Glacier lce Sheet

Note: 500-1000 times
vertical exaggeration
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https://atmos.washington.edu/~bitz/514_2013/lecture_may?2.pdf http://www.snowballearth.org/slides/Ch10-7.gif

The accumulation zone and ablation zone are separated by the Equilibrium
Line Altitude (ELA), or so-called firn line (Firn is old snow).
left: from lecture slides of ATMS 514 in UW; right: snowballearth.org]
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Accumulation
Snow accumulation rate depends on elevation

Height—>»

https://tc.copernicus.org/articles/13/943/2019/

Figure 3(a) Comparison between CloudSat (blue dots with 20 standard deviation bars) and MRR (red solid line
with shaded area representing a 95 % confidence interval) for the 17 February 2016 precipitation event at the

DDU station. (b) Same as panel (a) for the 20 March 2016 event at the DDU station.
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Accumulation
Snow accumulation rate depends on elevation

Height—>»
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Figure 3(a) Comparison between CloudSat (blue dots with 20 standard deviation bars) and MRR (red solid line

with shaded area representing a 95 % confidence interval) for the 17 February 2016 precipitation event at the
DDU station. (b) Same as panel (a) for the 20 March 2016 event at the DDU station.
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Accumulation
Snow accumulation rate depends on elevation

The elevation-
desert effect

Height—>»
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Figure 3(a) Comparison between CloudSat (blue dots with 20 standard deviation bars) and MRR (red solid line

with shaded area representing a 95 % confidence interval) for the 17 February 2016 precipitation event at the
DDU station. (b) Same as panel (a) for the 20 March 2016 event at the DDU station.
Below snow line,
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Accumulation
Snow accumulation rate depends on elevation
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Figure 3(a) Comparison between CloudSat (blue dots with 20 standard deviation bars) and MRR (red solid line
with shaded area representing a 95 % confidence interval) for the 17 February 2016 precipitation event at the

DDU station. (b) Same as panel (a) for the 20 March 2016 event at the DDU station.
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Accumulation
temperature-precipitation feedback
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Figure 3. Temperature history according to calibrated isotope curve, corrected for elevation
changes. The data have been smoothed with a 250-year triangular filter so that the effect of
different elevation corrections, corresponding to different marginal retreat distances, can be seen.
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Accumulation
temperature-precipitation feedback
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Ablation, ice flow

Antarctic ice streams



https://www.jpl.nasa.gov/video/details.php?id=1015
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Ablation, ice flow

Antarctic ice streams
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Ablation, ice flow
GGreenland ice streams



https://www.youtube.com/watch?v=GDXq8Oa5d5Q
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Ablation, ice flow
GGreenland ice streams
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workshop 2:
lce stream acceleration
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Ablation
Surface melting/ sublimation/ positive degree days

Melting and sublimation occur mostly during summer, when the
surface air temperature is higher than the melting temperature

The positive degree day empirical fit to surface melting provides a
simple way to estimate total melting over a year:

Melting (m/year) = (factor) x (sum of daily mean surface air
temperatures above O, over one year)

PDD = ; (T T )%(T T) o

Sum over all days in a year

Temperature at day/ HeaV|S|de function
Melting temperature )=0 for x<0, 1 otherwisg]

—xample: daily temperatures=[-5, 2, 4] = PDD=6
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Ablation: surface mass balance

2003-2012¢

IPCC AR5 2013

(cmyr!)
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Figure 4.13 | Key variable related to the determination of the Greenland ice sheet mass changes. (c) Changes in
ice sheet surface elevation for 2003-2008 determined from ICESat altimetry, with elevation decrease in red to
increase in blue (Pritchard et al., 2009). (d) Temporal evolution of ice loss determined from GRACE time-variable
gravity, shown in cm of water per year for 2003-2012, color coded red (loss) to blue (gain) (velicogna, 2009).
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Figure 4.14 | Key fields relating to the determination of Antarctica ice sheet mass changes.
(c) Changes in ice sheet surface elevation for 2003-2008 determined from ICESat altimetry,
with elevation decrease in red to increase in blue (Pritchard et al., 2009). (d) Temporal
evolution of ice loss determined from GRACE time-variable gravity, shown in cm of water per

year for 2003-2012, color coded red (loss) to blue (gain) (velicogna, 2009).
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workshop 3:
Positive Degree Days
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Ablation
surface melting: albedo feedbacks

The surface temperature is largely
controlled by the albedo (the
surface reflectivity of sunlight).

Positive melting-albedo
feedback: The low albedo of

Jh

melting ponds leads to more Scentists retiving sampESRGgine
. . . NASA/REUTERS. https://ww jeek.
sunlight absorption, higher surface wighSpalects Tt 09+7>4

temperature, and enhanced melting.

Biological albedo feedback:
Algae in melting ponds can further
darken the ice and reduce the
albedo. Remote forest fires result in
soot over the ice and albedo
change.



https://twitter.com/capitalweather/status/1157352216279339008
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Ablation: Calving
break-up of ice into ocean at edge of ice sheet

A giant piece of ice breaks off the Perito Moreno Glacier in Patagonia, Argentina
Credit: iStock; https://www.commercialriskonline.com/wp-content/uploads/2018/10/0_ice-calving-climate-change_iStock-694728278.jpg

Stretching and compression create crevasses



Ablation

A Massive Glacier Calving in 2013
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Ablation

A Massive Glacier Calving in 2013
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Ablation: Calving
break-up of ice into ocean at edge of ice sheet

Slower flow Faster flow

, zone of ice

! stretching '/‘ crevasses

"\ calving

iceberg

basal & lateral drag stretch ice sheet, creating crevasses


http://www.antarcticglaciers.org/glacier-processes/glacial-lakes/calving-of-freshwater-glaciers/
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Ablation: Calving
break-up of ice into ocean at edge of ice sheet
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Ablation
Calving due to hydro-fracturing

crevasse ice surface water
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R
LI crevasses reach sea level, as

= e 1 buoyancy forces may overcome
. yield stress (Benn et al. 2007)

Fig. 12. Schematic illustration of first-order calving in response to
longitudinal stretching. Surface crevasses propagate downward to a
depth d in response to the velocity gradient 0Ug/0x. Calving is
assumed to occur when d=# (after Benn et al., in press). Benn et al. 2007
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Ablation
Calving due to hydro-fracturing: Larsen B ice shelf
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https://en.wikipedia-on-ipfs.org/wiki/
List_of Antarctic_and_sub-
Antarctic_islands.html

& Animation of MODIS data by Alex Forman

https://commons.wikimedia.org/wiki/File:Antarctic-Peninsula-lce-Shelves.png

From 31 January 2002 to March 2002 the Larsen B sector partially collapsed
and parts broke up, 3,250 squared km of ice 220 m thick, an area comparable to
the US state of Rhode Island.


https://en.wikipedia.org/wiki/Rhode_Island
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Ablation
Calving due to hydro-fracturing: Larsen B ice shelf
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Ablation
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Calving due to melting at waterline

high stress at —
crevasse tip
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Ablation
Calving: role of buoyancy forces

A: Longitudinal extension C: Buoyant calving - ice foot

Calving glaciers and ice shelves;
Douglas I. Benn, Jan A. Astrom, 2018

o S % S
L YR
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Y

Figure 2. A selection of key calving styles: (a) rifting due to longitudinal extension, (b) collapse of
overhang following undercutting by subagqueous melt, (¢) buoyant calving: release of a protruding
‘ice foot’ below the waterline and (d) buoyant calving: uplift of a super-buoyant glacier tongue.
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Notes section 10.2.3
Calving
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workshop #4
Calving



stationary wave feedback
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notes section 10.2.4
Ice flow, MISI (use following slides)



Ice flow: Marine Ice Sheet Instability (MISI)™ ™

Snow Accumulation (P)

stable unstable  gtaple

Grounding line

flux =cH>

Bed (D)

From Alex Robel

lce transport is larger when the grounding line ice Is thicker.



Marine Ice Sheet Instability (MISIy ™ " ™
scenario (1): melting by a warmer ocean

Snow Accumulation (P) from Alex Robel
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Marine Ice Sheet Instability (MISIy ™ " ™
scenario (1): melting by a warmer ocean

Snow Accumulation (P) from Alex Robel
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From Alex Robe
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scenario (1): melting by a warmer ocean

Snow Accumulation (P) from Alex Robel
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Marine Ice Sheet Instability (MIS
leading to ice retreat in Greenland

Mogens N.

I§e sheets, Wanying Kang and Eli Tziperman
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note large difference from previous topography) oty ] & o
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stationary wave feedback
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Ablation

Moulins and basal hydrology

YALE Climate Connections

https://www.valeclimateconnections.org/2014/09/thousands-of-nameless-short-lived-lakes-video/

Moulins transport water to base, can accelerate ice flow


https://www.yaleclimateconnections.org/2014/09/thousands-of-nameless-short-lived-lakes-video/
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Ablation

Moulins and basal hydrology

YALE Climate Connections

https://www.valeclimateconnections.org/2014/09/thousands-of-nameless-short-lived-lakes-video/

Moulins transport water to base, can accelerate ice flow


https://www.yaleclimateconnections.org/2014/09/thousands-of-nameless-short-lived-lakes-video/
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notes section 10.2.5
Basal hydrology
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workshop #5
Basal hydrology
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FAQ 13.2, Figure 1 | lllustrative synthesis of projected changes in SMB and outflow by 2100 for (a) Greenland and (b) Antarctic ice sheets.
Colours shown on the maps refer to projected SMB change between the start and end of the 21st century using the RACMO2 regional
atmospheric climate model under future warming scenarios A1B (Antarctic) and RCP4.5 (Greenland). For Greenland, average equilibrium line
locations during both these time periods are shown in purple and green, respectively. lce-sheet margins and grounding lines are shown as black
lines, as are ice-sheet sectors. For Greenland, results of flowline modelling for four major outlet glaciers are shown as inserts, while for Antarctica
the coloured rings reflect projected change in outflow based on a probabilistic extrapolation of observed trends. The outer and inner radius of
each ring indicate the upper and lower bounds of the two-thirds probability range of the contribution, respectively (scale in upper right); red refers
to mass loss (sea level rise) while blue refers to mass gain (sea level fall). Finally, the sea level contribution is shown for each ice sheet (insert
located above maps) with light grey referring to SMB (model experiment used to generate the SMB map is shown as a dashed line) and dark
grey to outflow. All projections refer to the two-in-three probability range across all scenarios.
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The End!



