
Global Warming Science 101, Forest fires, Eli Tziperman

Eli Tziperman

Forest fires
Global Warming Science EPS101

https://courses.seas.harvard.edu/climate/eli/Courses/EPS101/ 

https://courses.seas.harvard.edu/climate/eli/Courses/EPS101/


Global Warming Science 101, Forest fires, Eli Tziperman

https://www.youtube.com/watch?v=mC_TP2Syk7s 

CBS Sunday Journal: Apocalyptic Western wildfires, Sep 13, 2020

https://www.youtube.com/watch?v=mC_TP2Syk7s
https://www.youtube.com/watch?v=mC_TP2Syk7s


Global Warming Science 101, Forest fires, Eli Tziperman

https://www.youtube.com/watch?v=mC_TP2Syk7s 

CBS Sunday Journal: Apocalyptic Western wildfires, Sep 13, 2020

https://www.youtube.com/watch?v=mC_TP2Syk7s
https://www.youtube.com/watch?v=mC_TP2Syk7s


Global Warming Science 101, Forest fires, Eli Tziperman

Workshop #1: 

Observed fire trends
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Observed Forest Fire trends

It’s complicated…

plt.tight_layout()

[ ]: Discussion: XX

https://cwfis.cfs.nrcan.gc.ca/ha/nfdb?type=poly&year=9999
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https://cwfis.cfs.nrcan.gc.ca/ha/nfdb?type=poly&year=9999 

Over 8000 fires occur each year, & burn an average of over 2.1 million hectares. 
Lightning causes ~50% of all fires but accounts for ~85% of annual area burned.

http://nfdp.ccfm.org/en/data/fires.php 

Canadian Forest Fire area and number

https://cwfis.cfs.nrcan.gc.ca/ha/nfdb?type=poly&year=9999
http://nfdp.ccfm.org/en/data/fires.php
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The basics

Fuel Ignition

Dryness

The three factors determining fire’s ability to start and spread
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It’s complicated…

Climate factors affecting fire frequency and size:
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It’s complicated…

Climate factors affecting fire frequency and size:
prior rainy season precipitation, earlier spring snowmelt ➨ More vegetation 
growth and more fuel availability. Warming, droughts, dry weather ➨ drier 
fuels. Strong&dry winds (Santa Ana, S. CA) ➨ accelerate drying & fire spread.

Non-climate related human effects:
95% of fire ignitions in some areas are human-caused, logging, conversion of land 
to and from agriculture-use, fire suppression policies & buildup of fuels, population 
increases (more ignitions; building in fire-prone areas ➨ more fire damage). 

Detecting forest fires signal due to anthropogenic climate change is complex:
For sea ice, Hurricanes, etc., detection requires the signal to be separated from 
natural climate variability. For forest fires, human effects include non-climate 
change factors ➨ detecting a trend not due to natural fire variability is insufficient. 

Additional factors:
changes of unknown origin to composition of forests (tree type, size, density), 
effect of past fires on connectivity of forests & ability of fires to spread, on fuel 
availability in following years.
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https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/fire-history 

Lightning-ignited forest fires are natural, part of ecosystem dynamics

Pre-anthropogenic past forest fires are recorded in ash layers 
in lake sediments, and as burn signs in tree ring records

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/fire-history
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Lightning-ignited forest fires are natural; a part of ecosystem dynamics

Lab experiments: resinous bonds 
between cone scales begin to break 
between 45–60 ˚C; serotinous cones 
touched by fire expand and allow seeds 
to be released. https://fitznaturalist.com/2016/11/29/

sometimes-indivuals-lose-while-species-win/ 

https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/fire-history
https://fitznaturalist.com/2016/11/29/sometimes-indivuals-lose-while-species-win/
https://fitznaturalist.com/2016/11/29/sometimes-indivuals-lose-while-species-win/
https://www.youtube.com/watch?v=KSiqZ-Asp3c
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Notes section 14.1: 

Tools: 

• Vapor pressure deficit (VPD), 
• Climatic water deficit (CWD), 
• Fire indices  

(Use next slides)
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Evaporation from soil + evaporation from stomata in leaves fed by 
transpiration, the movement of water within plants from roots to leaves.
Potential evapotranspiration (PET):
The evapotranspiration that would have occurred given the 
meteorological conditions if the surface water were not a limiting factor. 
PET = “demand” for evaporation.
Climatic water deficit (CWD): 
The seasonally integrated potential evapotranspiration (PET) minus the 
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Fine Fuel Moisture Code (FFMC): 
moisture content of litter & other cured 
fine fuels. Indicator of relative ease of 
ignition & flammability.

Canadian Forest Fire Weather Index (FWI) System

https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi 

https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
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Buildup Index (BUI): total amount of fuel available for combustion. Based on DMC and DC.

Fire Weather Index: fire intensity. Based on ISI & BUI, used as a general index of fire danger.

Daily Severity Rating: the difficulty of controlling fires. Based on the Fire Weather Index but it 
more accurately reflects the expected effort required for fire suppression.
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https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
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Fire indices use a variety of factors to predict daily fire danger. commonly used ones: Canadian 
Fire Weather Index (FWI), Australian (McArthur’s) Forest Fire Danger Index (FFDI) & US Burning 
Index. They depend on daily weather measurements, including temperature, relative humidity, 
wind speed, and precipitation over the past few days. They also take into account fuel dryness/
aridity, fine fuel moisture, drought, buildup of fuel and the ability of fire to spread. 

https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi 

https://cwfis.cfs.nrcan.gc.ca/maps/fw 

Fires and weather/climate: fire Weather Maps

https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
https://cwfis.cfs.nrcan.gc.ca/maps/fw
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Workshop #2: 

VPD as a fire danger index: 
a) Understanding VPD: Plot the saturation water vapor pressure and 

the water vapor partial pressure assuming an 80% relative humidity 
versus temperature. Plot the difference between the two curves (i.e., 
the VPD for a constant relative humidity) versus temperature. 

b) Plot the western US VPD and area burnt versus time on the same 
axes. Then repeat using VPD and the  of area burnt. Calculate 
the correlation coefficient between the two plotted time series for 
each of the two cases.

log10
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3. Separating ACC from variability: Extract the ACC signal in temperature
from an ensemble of model runs for 1920–2020. Plot all ensemble time series
and superimpose the estimated ACC signal.

[5]: # calc avereage over all ensemble members:
TS_timeseries=1.0*forest_fires_west_US_TS_ensemble_timeseries
dates=1.0*forest_fires_west_US_TS_timeseries_ensemble_years
TS_timeseries_avg=np.mean(TS_timeseries[:,:],axis=0)

# plot:
fig=plt.figure(dpi=300,figsize=(6,4))
plt.clf()
for ensemble_member in range(len(TS_timeseries[:,0])):

# plot all ensemble averages with thin transparent lines (alpha parameter)
plt.plot(dates,TS_timeseries[ensemble_member,:],lw=0.25,alpha=0.4)

plt.plot(dates,TS_timeseries[31,:],lw=0.4,color='k',label="#33")
TS_timeseries_avg_smooth = savgol_filter(TS_timeseries_avg, 21, 3) # window size 51,␣↪polynomial order 3
plt.plot(dates,TS_timeseries_avg[:],lw=0.75,color='r',label="Mean")
plt.plot(dates,TS_timeseries_avg_smooth[:],lw=2,color='y',label="Mean, smoothed")
plt.xlabel("Year")
plt.ylabel("Surface temperature")
ax=plt.gca()
ax.set_xticks(range(1920,2100,1), minor=True)
ax.set_yticks(range(260,300,1), minor=True)
plt.xlim([1920,2020]);
plt.ylim([293.5,299.5]);
plt.legend(ncol=3)
plt.grid(lw=0.25);
plt.tight_layout()
plt.show();
fig.savefig("Output/forest-fires-average-smoothed-western-US-Temperature.pdf")

2. VPD as a fire danger index.
(a) Understanding VPD: Plot the saturation water vapor pressure and the water vapor partial
pressure assuming an 80% relative humidity versus temperature. Plot the difference between
the two curves (i.e., the VPD for a constant relative humidity) versus temperature.

[3]: # calculate dimensional VPD as function of temperature:

Trange=np.asarray(np.arange(0,40,1))
Saturation_vapor_pressure= 6.112*np.exp(17.67*Trange /(Trange + 243.5))
vapor_pressure_RH80=0.8*Saturation_vapor_pressure
VPD=Saturation_vapor_pressure-vapor_pressure_RH80

plt.figure(figsize=(7,3),dpi=300)
plt.subplot(1,2,1)
plt.plot(Trange,Saturation_vapor_pressure,color="r",label="$q^*(T)$")
plt.plot(Trange,vapor_pressure_RH80,color="b",label="$RH{\cdot}q^*(T)$")
plt.legend()
plt.grid(lw=0.25)
plt.xlabel("T (C)")
plt.ylabel("moisture (mb)")

plt.subplot(1,2,2)
plt.plot(Trange,VPD)
plt.grid(lw=0.25)
plt.xlabel("T (C)")
plt.ylabel("VPD (mb)")

plt.tight_layout()
plt.show()
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Notes section 14.2 (first part) 
Detection of burnt area due to ACC 

Ensemble model runs, chaotic behavior and sensitivity to initial 
conditions, weather/climate variability vs forced ACC signal (use next 
two slides)
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Weather chaos, 
sensitivity to initial 
conditions: 
The butterfly effect!

https://upload.wikimedia.org/wikipedia/
commons/8/8e/SensInitCond.gif 

http://www.youtube.com/
watch?v=EjNAyOFcwoc 

https://upload.wikimedia.org/wikipedia/commons/8/8e/SensInitCond.gif
https://upload.wikimedia.org/wikipedia/commons/8/8e/SensInitCond.gif
https://www.youtube.com/watch?v=EjNAyOFcwoc
http://www.youtube.com/watch?v=EjNAyOFcwoc
http://www.youtube.com/watch?v=EjNAyOFcwoc
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Figure 14.2: Example of extraction of ACC signal from multi-model mean. Showing 
August temperature (K) averaged over the western US from an ensemble of climate 
model runs, following the RCP8.5 scenario to year 2100. Thin color lines are 
individual ensemble members. The black line is of ensemble member number 33, 
the red line is the average over all ensemble members, and the thick yellow line 
is the smoothed & averaged time series representing the ACC signal estimated 
using this model ensemble. 

Ensemble model runs, weather/climate variability vs forced ACC signal
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Workshop #3: 

Separating ACC from variability: Extract the ACC signal in 
temperature from an ensemble of model runs for 1920–2020. 
Plot all ensemble time series and superimpose the estimated 

ACC signal.

Leave for HW, use notes’ Fig 

14.2 for now if needed for 

workshop #4
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Notes section 14.2: (continued, 2nd part) 
Detection of burnt area due to ACC 

[ACC=anthropogenic climate change] 
Outline: 

1. Find regression coefficients from the full time series of area and VPD, by 
plotting a scatter plot of VPD vs log10(area burnt) and fitting a line: 

2. Calculate climate contribution to VPD trend as an ensemble model average  

3. Apply  &  to ACC trend in VPD to find area burnt due to climate change 

4. Subtract from full area burnt record to find natural variability in the area burnt 

(use the following slide)

a b

230 Chapter 14. Forest fires

more rapid drying of fuels. Due to the Clausius-Clapeyron relation, VPD
increases exponentially with temperature if the moisture content (say spe-
cific humidity) of the air is constant. Furthermore, VPD increases with
temperature even if the relative humidity (RH) remains constant (note that
the moisture content increases with temperature for a fixed RH). The
strong correlation of VPD with burnt area therefore suggests an important
role for warming in the occurrence of fires.

Climatic water deficit (CWD): is the seasonally integrated potential
evapotranspiration (PET, section 12.2) minus the actual evapotranspiration.

Fire indices: these indices use a variety of factors to predict daily fire
danger. Some commonly used fire indices are the Canadian Fire Weather
Index (FWI), the Australian (McArthur’s) Forest Fire Danger Index (FFDI)
and the US Burning Index. They depend on daily weather measurements,
including temperature, relative humidity, wind speed, and precipitation.
They also take into account factors such as fuel dryness/aridity, fine fuel
moisture, drought, the buildup of fuel and the ability of the fire to spread.

14.3 Detection of burnt area due to ACC
Our objective here is to estimate the forest fire area that can be attributed
to ACC. Consider first time series of the log10 of the area burnt in the
western US as a function of year in Figure 14.1a (red curve). One relevant
climate factor, the VPD over the same area, is also shown in Figure 14.1a
(blue). The two seem to co-vary, and are plotted against one another in
Figure 14.1b together with the corresponding regression line expressing
the log10 of area burnt in terms of the normalized VPD,

log10(area burnt) = a⇥V PD+b. (14.1)

The deduced relation between area burnt and VPD is robust statistically
(p-value smaller than 0.001), and it explains over 75% of the variance. If
the two time series (log of area burnt and VPD) are linearly detrended, the
regression slope a decreases by only about 10%, and the explained variance
decreases only very slightly to 72%, a surprisingly strong result. This strong
and robust statistical relation is especially surprising because large fires
depend on so many other factors beyond dryness of fuel that is induced by
high VPD: they require an ignition, strong winds, fuel availability, and the
ability to grow in spite of human attempts to extinguish them (97% of fires
are eliminated by humans before becoming large enough to significantly
affect the total annual burned area).

(Following Abatzoglou 
& Williams 2016)
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Figure 14.1: Estimating the contribution of ACC to the western US forest fire area. (a) 
Red line: log10(area burnt, 103 km2). Blue: standardized VPD. (b) Regression between 
log10(burnt area) & VPD. Points color-coded by year, blue to red. (c) Blue: VPD over 
western US. Dash: contribution of ACC from a multi-model average. Solid gray: VPD 
time series w/ ACC signal removed. (d) Dash gray: estimated contribution to the burnt 
area due to ACC, calculated from VPD due to ACC using the regression relation. Solid 
gray: estimated burnt area without the contribution of ACC.

Detection of west-US burnt area due to ACC

230 Chapter 14. Forest fires

more rapid drying of fuels. Due to the Clausius-Clapeyron relation, VPD
increases exponentially with temperature if the moisture content (say spe-
cific humidity) of the air is constant. Furthermore, VPD increases with
temperature even if the relative humidity (RH) remains constant (note that
the moisture content increases with temperature for a fixed RH). The
strong correlation of VPD with burnt area therefore suggests an important
role for warming in the occurrence of fires.

Climatic water deficit (CWD): is the seasonally integrated potential
evapotranspiration (PET, section 12.2) minus the actual evapotranspiration.

Fire indices: these indices use a variety of factors to predict daily fire
danger. Some commonly used fire indices are the Canadian Fire Weather
Index (FWI), the Australian (McArthur’s) Forest Fire Danger Index (FFDI)
and the US Burning Index. They depend on daily weather measurements,
including temperature, relative humidity, wind speed, and precipitation.
They also take into account factors such as fuel dryness/aridity, fine fuel
moisture, drought, the buildup of fuel and the ability of the fire to spread.

14.3 Detection of burnt area due to ACC
Our objective here is to estimate the forest fire area that can be attributed
to ACC. Consider first time series of the log10 of the area burnt in the
western US as a function of year in Figure 14.1a (red curve). One relevant
climate factor, the VPD over the same area, is also shown in Figure 14.1a
(blue). The two seem to co-vary, and are plotted against one another in
Figure 14.1b together with the corresponding regression line expressing
the log10 of area burnt in terms of the normalized VPD,

log10(area burnt) = a⇥V PD+b. (14.1)

The deduced relation between area burnt and VPD is robust statistically
(p-value smaller than 0.001), and it explains over 75% of the variance. If
the two time series (log of area burnt and VPD) are linearly detrended, the
regression slope a decreases by only about 10%, and the explained variance
decreases only very slightly to 72%, a surprisingly strong result. This strong
and robust statistical relation is especially surprising because large fires
depend on so many other factors beyond dryness of fuel that is induced by
high VPD: they require an ignition, strong winds, fuel availability, and the
ability to grow in spite of human attempts to extinguish them (97% of fires
are eliminated by humans before becoming large enough to significantly
affect the total annual burned area).

(Data, methodology and 
results based on Abatzoglou 
& Williams 2016)
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Workshop #4: 

Estimate the contribution of ACC to western US forest fire area 
(following Abatzoglou and Williams 2016): 
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Uncertainty in projection of future west-US burnt area due to ACC
VPD vs frequency of wet days

3.2. Climate Controls on Wildfire
3.2.1. Summer Wildfire
Figure 2 shows that among the climate variables considered, all‐region summer burned area correlated most
strongly with warm‐season (March–October) VPD (r= 0.72, p < 0.01; Figure 2a). VPD is most strongly influ-
enced by Tmax due to the exponential Clausius‐Clapeyron effect of temperature on saturation vapor pres-
sure, explaining why summer burned area correlates more strongly with warm‐season mean Tmax
(r = 0.65, p < 0.01; Figure 2b) than with the other components of VPD: Tmin (r = 0.46, p < 0.01) and vapor
pressure (r = −0.36, p < 0.05).

On a regional basis, the fire‐promoting effects of fuel aridity (high VPD, precipitation deficit, and low fuel
moisture) were more strongly correlated with burned area in the wetter and more heavily forested North
Coast and Sierra Nevada than in the drier and less forested Central or South Coast (Figures 2a–2d and
S4). In fact, forest areas were mostly responsible for the strong correlation between fuel aridity variables
and burned area (Figures S5 and S6); correlation between summer all‐region burned area and warm‐season
VPDwas 0.79 (p< 0.01) in forest areas but only 0.35 (p < 0.05) in nonforest areas (Figures S5c and S5d). This
result is consistent with the tendency for interannual variability in regional burned area to be more sensitive
to variations in fuel aridity in more heavily vegetated zones where fuel abundance is less limiting
(Abatzoglou et al., 2018; Littell et al., 2018; McKenzie & Littell, 2016).

Consistent with previous findings (e.g., Keeley & Syphard, 2017), the correlation between burned area and
climate was relatively weak in Central and South Coast (Figure 2). This is likely partly because fire‐climate
relationships in these regions are strongly manipulated by humans via ignitions, suppression, and land cover
change (Balch et al., 2017; Sleeter et al., 2011; Syphard et al., 2017). In addition, aboveground biomass is gen-
erally lower in these regions due to warmer and drier conditions, causing fuel availability to often limit fire
spread in grasslands and potentially shrublands with nonnative grasses (Keeley, 2004). Similar to

Figure 2. Correlation between summer (May–September) burned area and climate: 1972–2018. Maps: Regional correlations between the logarithm of summer
burned area and mean seasonal climate (outline around region: p < 0.05). Scatterplots represent the full study domain. Climate variables in (a–f): vapor‐pressure
deficit (VPD), daily maximum temperature (Tmax), standardized precipitation index (SPI), Wet Day Frequency (frequency of days with precipitation total
≥2.54 mm), 1,000‐hr dead fuel moisture (FM1000), and SPI fromMarch of 2 years prior to the fire year through October of the year prior to the fire year (Antecedent
SPI). Colors in scatter plots correspond to the legend in (a).
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Observed Impacts of Anthropogenic Climate Change on Wildfire in California, 
A. Park Williams et al  (2019)

Both measures are good predictors of observed burnt area, but 
their future trajectories under warmer climate are very different ➨ 
difficult to know which one to use for projections of forest fires.
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https://sustainablela.ucla.edu/2025lawildfires 

Three extreme climate events combined to drive the extreme January 
2025 wildfire activity in coastal southern California
1. High fuel loads due to rapid plant growth after very wet conditions 

from winter 2023 through spring 2024

https://www.aparkwilliams.com/ 
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2025 wildfire activity in coastal southern California
1. High fuel loads due to rapid plant growth after very wet conditions 

from winter 2023 through spring 2024
2. Very dry fuels caused mostly by failure of cool-season rains to arrive 

in fall-winter 2024/25 and amplified by anomalous warmth from 
summer–fall of 2024

3. Extraordinary Santa Ana wind event in January 2025
A. Climate change may be linked to roughly a quarter of the extreme 

fuel moisture deficit when the fires began.
B. The fires would still have been extreme without climate change, but 

probably somewhat smaller and less intense.

https://www.aparkwilliams.com/ 

https://sustainablela.ucla.edu/2025lawildfires
https://www.aparkwilliams.com/


Global Warming Science 101, Forest fires, Eli Tziperman

Australian fires of 2019/20:  
Natural climate variability modes vs 

Anthropogenic climate change
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Australian fires of 
2019/20 

The 2019–20 Australian bushfire 
season, known as Black 
Summer, was a period of 
unusually intense bushfires in 
many parts of Australia.

Clockwise from top left: 
Sydney's George 
Street blanketed by smoke in 
December 2019; Orroral Valley 
fire seen from Tuggeranong; 
Damaged road sign along Bells 
Line of Road; Gospers 
Mountain bushfire; Smoke 
plume viewed from the ISS; 
Uncontained bushfire in South 
West Sydney.  
(Wikipedia: https://en.wikipedia.org/wiki/
2019%E2%80%9320_Australian_bushfire_season ) 

https://en.wikipedia.org/wiki/Sydney
https://en.wikipedia.org/wiki/George_Street,_Sydney
https://en.wikipedia.org/wiki/George_Street,_Sydney
https://en.wikipedia.org/wiki/Tuggeranong
https://en.wikipedia.org/wiki/International_Space_Station
https://en.wikipedia.org/wiki/2019%E2%80%9320_Australian_bushfire_season
https://en.wikipedia.org/wiki/2019%E2%80%9320_Australian_bushfire_season
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Australian fires of 2019/20 and SST variability modes 

https://www.youtube.com/watch?v=wRBlvXov91E

https://www.youtube.com/watch?v=wRBlvXov91E
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Australian fires of 2019/20 and SST variability modes 

https://www.youtube.com/watch?v=dJpNLfD84gA 

https://www.youtube.com/watch?v=dJpNLfD84gA
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Australian fires of 2019/20 and SST variability modes 
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Australian fires of 2019/20 and SST variability modes 
Australia’s Angry Summer: This Is 
What Climate Change Looks Like 
The catastrophic fires raging across the southern half of the continent are largely the result of 
rising temperatures 
Scientific American, By Nerilie Abram on December 31, 2019

https://www.scientificamerican.com/author/nerilie-abram/
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Australian fires of 2019/20 and SST variability modes 
Australia’s Angry Summer: This Is 
What Climate Change Looks Like 
The catastrophic fires raging across the southern half of the continent are largely the result of 
rising temperatures 
Scientific American, By Nerilie Abram on December 31, 2019

“Of course, unusually hot summers have happened in the past; so have bad 
bushfire seasons. But the link between the current extremes and anthropogenic 
climate change is scientifically undisputable.”

https://www.scientificamerican.com/author/nerilie-abram/
http://www.bom.gov.au/state-of-the-climate/
https://www.abc.net.au/news/2019-11-15/scott-morrison-should-listen-to-fire-chiefs-on-climate-change/11707096
https://www.abc.net.au/news/2019-11-15/scott-morrison-should-listen-to-fire-chiefs-on-climate-change/11707096
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rising temperatures 
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bushfire seasons. But the link between the current extremes and anthropogenic 
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patterns that deliver severe fire weather.”
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Australian fires of 2019/20 and SST variability modes 
Australia’s Angry Summer: This Is 
What Climate Change Looks Like 
The catastrophic fires raging across the southern half of the continent are largely the result of 
rising temperatures 
Scientific American, By Nerilie Abram on December 31, 2019

“Of course, unusually hot summers have happened in the past; so have bad 
bushfire seasons. But the link between the current extremes and anthropogenic 
climate change is scientifically undisputable.”

“The current summer has presented the perfect storm for wildfire. Long-term 
climate warming, combined with years of drought, colliding with a set of climate 
patterns that deliver severe fire weather.”

“The angry summer playing out in Australia right now was predictable. The 
scientific evidence is well known for how anthropogenic greenhouse gas 
emissions are causing long-term climate change and altering climate 
variability in ways that increase our fire risk. The role of climate change in the 
unprecedented fires gripping Australia is also well understood by our emergency 
services."

https://www.scientificamerican.com/author/nerilie-abram/
http://www.bom.gov.au/state-of-the-climate/
https://www.abc.net.au/news/2019-11-15/scott-morrison-should-listen-to-fire-chiefs-on-climate-change/11707096
https://www.abc.net.au/news/2019-11-15/scott-morrison-should-listen-to-fire-chiefs-on-climate-change/11707096


Australia fires 2020 and La Niña/SAM/IOD

La  Nina

King et al 2020: “The major Australian 
droughts of the past 100 years have 
coincided with several of the longer-
lasting periods when La Niña and 
negative IOD events did not occur. The 
Second World War Drought from 1935 
to 1945 includes two unusually long 
periods when neither a La Niña nor a 
negative IOD event occurred, from 
1934 to 1938 and 1939 to 1942.”
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King et al 2020: “The major Australian 
droughts of the past 100 years have 
coincided with several of the longer-
lasting periods when La Niña and 
negative IOD events did not occur. The 
Second World War Drought from 1935 
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periods when neither a La Niña nor a 
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1934 to 1938 and 1939 to 1942.”



Australia fires 2020 and La Niña/SAM/IOD

La  Nina

Southern Annular mode
Indian Ocean dipole

King et al 2020: “The major Australian 
droughts of the past 100 years have 
coincided with several of the longer-
lasting periods when La Niña and 
negative IOD events did not occur. The 
Second World War Drought from 1935 
to 1945 includes two unusually long 
periods when neither a La Niña nor a 
negative IOD event occurred, from 
1934 to 1938 and 1939 to 1942.”
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Australian fires of 2019/20 and SST variability modes 
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Figure 14.3: Factors contributing to Australian droughts. (a) IOD. (b) NINO3.4. 
(c) SAM. (d) Rain over the Murray-Darling Basin in south-east Australia. 

Australian fires of 2019/20 and SST variability modes 
14.4 Fires and natural climate variability 235

the beginning of 2020 (panel d). Note the lack of significant rain events
over 2018–2019.

Figure 14.3: Factors contributing to Australian droughts. (a) IOD index
(°C) time series since 1970. (b) NINO3.4 (°C). (c) SAM index (non-
dimensional) time series. (d) Time series of monthly rain (mm/month) over
the Murray-Darling Basin in south-east Australia. Gray shading indicates
the dry period of 2018–2019 that preceded the dramatic fire season of late
2019 to the beginning of 2020.
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Australian fires of 2019/20 and SST variability modes 
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Figure 14.4: Cluster analysis results for Australian forest fires, showing the 
means for the five dominant clusters. (a) IOD vs. rain in the Murray-Darling 
Basin in southeast Australia. (b) NINO3.4 vs. rain. (c) SAM vs. rain.  
The black star ★ shows the mean conditions during 2018–2020.  
The blue square ☐ shows what leads to especially rainy conditions

Australian fires of 2019/20 and SST variability modes 
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Bottom line: Indian Ocean dipole, La Niña, and 
Southern Annular Mode all contributed. 

(Anthropogenic Climate Change may have too, 
large uncertainty)  

In the long term: anthropogenic warming may 
contribute to such fires.

Australian fires of 2019/20 & natural climate variability modes 
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Workshop #5: Role of variability modes 

Calculate the averaged SAM/NINO3.4/IOD indices for rainy vs dry 
years (defined to be above and below one standard deviation, 
respectively) in south-east Australia following King et al. (2020), 

compare to 2018–9.
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Area burnt reduction dominated by African land use changes

Global fire trends

MODIS satellite, see 
Giglio et al. (2013), 
Andela et al. (2017)

Jolly et al. (2015)
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Increased precipitation:
•In currently warm areas characterized by grass and shrubs may lead to 

higher plant growth and thus increased fires. 
•In moister areas, a precipitation increase can reduce fire activity. 

Warmer and drier weather:
•May increase fires in areas rich with available fuel (e.g., western US 

forests)
•But: increases in potential evaporation due to atmospheric warming and 

drying can reduce the growth of plants in drier areas, thus reducing 
fire activity. 

➨ It is therefore important to realize that temperature change is 
not necessarily the only or even the dominant factor determining 
fire activity in a future warmer climate.

Response to warming depends on current regime
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Forest fires conclusions
1. It’s complicated: 

A. Fire is a natural process, very episodic
B. Human effects include non-climate factors (ignitions, fire 

suppression/fire deficit)
C. The observed record is short and sporadic
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Forest fires conclusions
1. It’s complicated: 

A. Fire is a natural process, very episodic
B. Human effects include non-climate factors (ignitions, fire 

suppression/fire deficit)
C. The observed record is short and sporadic
D. Different areas/forest types respond differently to warming

2. Example case studies:
A. West US fires seem to be increasing due to ACC
B. 2024 LA fire may have been more severe due to ACC
C. Australian 2020 fires: natural variability, possibly ACC too
D. Global fires: decreasing due to African land use 

3. Future projections in west US: may be different if using VPD 
vs frequency of wet days

4. Bottom line: w/enough warming, fires will change; they are 
part of the ecosystem dynamics ➨ any change is undesired
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The End


