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1 One dimensional continuous systems

1.1 Fixed points and their stability

The first thing to look at when examining a dynamic system is fixed points and their stability. We
can do it analytically or graphically.

Graphically: For ODEs plot ẋ vs. x and examine zero crossings (fixed points) and the slope at these
crossings (stable if it’s negative). For maps make a cobweb plot.

Analytically, we proceed as follows:

ODE map
ẋ = f (x) xn+1 = G(xn)

fixed point (x∗) f (x∗) = 0 G(x∗) = x∗
stable if f ′(x∗) < 0 |G′(x∗)| < 1

Note that in many problems, the analytical approach will fail (fixed points can’t be solved for,
f ′(x∗) = 0, or |G′(x∗)| = 1) but the graphical approach will yield readily accessible results.

In higher dimensional systems, the stability of ODEs depends on the eigenvalues of ∂ fi(x∗)
∂x j

being

less than zero; the stability of maps depends on the absolute value of the eigenvalues of ∂Gi(x∗)
∂x j

being less than 1.

1.2 Bifurcations

(a) Saddle-node bifurcation: ẋ = µ − x2 (a stable/unstable pair of fixed points is created or
destroyed)

(b) Transcritical bifurcation: ẋ = µx − x2 (a fixed point changes its stability; a nearby fixed
point with opposite stability is created so that the flow far from the bifurcation point remains
unchanged)

(c) Supercritical pitchfork bifurcation: ẋ = µx− x3 (in a problem with right-left symmetry, a
stable fixed point becomes unstable with stable fixed points created on either side of it)

(c) Subcritical pitchfork bifurcation: ẋ = µx+x3 −x5 (Initially, there is one stable fixed point at
the origin. Saddle-node bifurcations occur on both sides of it, creating a situation with three
stable fixed points. At the actual subcritical pitchfork bifurcation, the two unstable fixed
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points disappear into the origin and the stable fixed point at the origin becomes unstable;
the stable fixed points on either side of the origin remain.)

Figure 1: 1D bifurcations (Strogatz, Figures 3.1.4, 3.2.2, 3.4.2, 3.4.7).

2 Two dimensional continuous systems

2.1 Linearized stability theory

(Strogatz, p. 123-138.) A linear 2D system has the form

ẋ = Ax (1)

with
A =

(

a b
c d

)

and x =

(

x
y

)

(2)

This linear system necessary has just one fixed point, x∗ = (0,0).

For a nonlinear 2D system, let

ẋ =

(

ẋ
ẏ

)

=

(

f (x)
g(y)

)

(3)

Fixed points (x∗,y∗) satisfy
(

f (x∗)
g(y∗)

)

=

(

0
0

)

.

To linearize around a fixed point such that ẋ = Ax+O(x2), use the Jacobian

A =

( ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)

(4)

evaluated at (x∗,y∗).

We’ll define
τ ≡ trace(A) = a+d (5)
∆ ≡ det(A) = ad−bc (6)
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The eigenvalues are
λ1,2 =

1
2

(

τ±
√

τ2 −4∆
)

(7)

To understand the following diagram and table, it helps to also consider that ∆ = λ1λ2 and τ =
λ1 +λ2.

Figure 2: Fixed point classification (Strogatz Figure 5.2.8).

∆ > 0 τ > 2
√

∆ unstable nodes
∆ > 0 τ = ±2

√
∆ stars*, degenerate nodes*

∆ > 0 0 < τ < 2
√

∆ unstable spirals
∆ > 0 τ = 0 centers*
∆ > 0 0 > τ > −2

√
∆ stable spirals

∆ > 0 τ < −2
√

∆ stable nodes
∆ = 0 any τ non-isolated fixed points*
∆ < 0 any τ saddle points

*borderline case

Along the line with stars and degenerate nodes, it is the former if there are 2 unique eigenvectors
and the latter if there is only one.

Linearization is robust, except for borderline cases where it can give the wrong result for the
stability of a nonlinear system (correct result may be on the borderline or in the adjacent regions
immediately to either side of the line in Figure 2). There is no one recipe for how to approach
borderline cases, but we considered several techniques that are sometimes applicable. The main
thing we are interested in is whether a fixed point is stable, so the most interesting borderline cases
are at the edge of the stable region in Figure 2, which is the lower right quadrant. Reversibility
(discussed below) can be helpful to check whether linearized centers are true centers in the full
nonlinear system. When linearization implies non-isolated fixed points, arguments based on the
stabilizing or destabilizing effect of the dropped nonlinear terms can be instructive (cf. Homework
3 #2b).

4



2.2 Plotting phase portraits

In Matlab, use quiver(x,y,u,v) to plot a vector field.

Sometimes it’s more instructive to plot a “direction field” instead of a vector field. Just divide your
flow vectors (u,v) = ( f (x,y),g(x,y)) by their amplitude (

√
u2 + v2).

The solution to the linear system (1) is

x(t) = x0eAt (8)

where eAt represents the matrix exponential. Analytically, the matrix exponential can be calculated
by diagonalizing A, but in Matlab you can just use expm(A). This allows you to plot trajectories
of an initial condition in phase space.

For nonlinear systems, it’s often useful to look at nullclines: lines along which ẋ = 0 or ẏ = 0.
Draw the line and then draw horizontal or vertical arrows along it to show the flow direction.

A useful program to plot trajectories of 2D nonlinear ODEs in Matlab can be downloaded from
http://math.rice.edu/∼dfield/

2.3 Index of a fixed point

We can define an index for any curve in phase space. The index for a curve is the sum of the indices
of the fixed points enclosed. Closed orbits must enclose fixed points whose indices sum to +1.

To find the index of a fixed point, draw the nullclines, draw a circle around the fixed point, and
draw an arrow representing the direction of the flow at each point where the circle intersects the
nullclines. Then follow the circle once around counterclockwise, pointing your arm in the direction
of each arrow, and see whether you rotate your arm in a full circle. The index is the number of times
you have to rotate your arm counterclockwise (i.e., the number of counterclockwise revolutions
made by the vector field as x moves once counterclockwise around the fixed point). Note that
you only need to consider nullclines, since the flow vector needs to cross a nullcline every time it
rotates through horizontal or vertical directions.

The index is −1 for saddle points and +1 for nodes, stars, centers, and spirals.

2.4 Reversible systems

A system (ẋ = f (x,y), ẏ = g(x,y)) is reversible if it is invariant (i.e., equalities still hold) under
(t →−t, y →−y). Implications: Basic graphical or heuristic arguments relying on this symmetry
often show for reversible systems that (a) linear centers are true centers (and not spirals) for the
full nonlinear system, or (b) homoclinic orbits exist.
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2.5 Existence of closed orbits

(Note that a limit cycle is an isolated closed orbit.) A system has no closed orbits if it has a
Liapunov function or can be written as a gradient system.

2.5.1 Gradient systems

A gradient system ẋ = f(x) is one which can be written ẋ = −∇V for some function V (x).

2.5.2 Liapunov functions

A Liapunov function is any function V (x) satisfying (a) V (x) > 0 for all x 6= x∗ and V (x∗) = 0,
and (b) V̇ < 0 for all x 6= x∗. A common guess is V (x) = x2 +ay2 (e.g., Strogatz Ex. 7.2.3).

2.6 Hopf bifurcations

A Hopf bifurcation is similar to a pitchfork bifurcation, except that it involves a limit cycle rather
than just fixed points. A Hopf bifurcation describes the creation and destruction of a limit cycle.

• Supercritical Hopf: At first there is just a stable fixed point at the origin (m < 0 in Strogatz)
and all perturbations decay to zero. As a parameter is varied, the fixed point at the origin
becomes unstable and a stable limit cycle appears around it; the amplitude of the limit cycle
increases as the parameter is further varied.

• Subcritical Hopf: At first there is an unstable fixed point at the origin (m > 0 is Strogatz),
perhaps with a stable limit cycle encircling it beyond the region where the bifurcation oc-
curs. Varying a parameter causes the origin to become stable with an unstable limit cycle
immediately around it.

3 Separatrices, manifolds, and center manifold theory

3.1 Separatrix

A separatrix is a trajectory in phase space that separates two regions with qualitatively different
trajectories. It is typically a trajectory that intersects a saddle point.

3.2 Stable and unstable invariant manifolds

The curve traced out by any trajectory in 2D phase space is an invariant manifold, because a tra-
jectory that starts on this curve stays on it forever. An invariant manifold is a space that trajectories
don’t leave.
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The stable manifold of a fixed point (or limit cycle) is the set of initial conditions whose trajec-
tories will eventually approach the fixed point (or limit cycle). The unstable manifold is the set
of initial conditions which will eventually approach the fixed point (or limit cycle) when evolved
backward in time; in other words, it is the set of points that can be reached by trajectories starting
infinitessimally close to the fixed point (or limit cycle). For a 2D saddle point: there are 2 curves
that pass through the saddle point on which trajectories lie, and these are the stable and unstable
manifold.

3.3 Center manifold theory

Consider a 3D system where ż = −z so z = 0 is stable. In the x− y plane, a 2D bifurcation (e.g.
Hopf) could occur, even though this is a higher dimensional system. Here ẑ is the stable manifold
and the x− y plane is the center manifold. If, instead, we had ż = z, then ẑ would be an unstable
manifold. Where there’s an unstable manifold, you’ll be unlikely to observe a bifurcation in the
center manifold, since any small perturbation from the center manifold will grow.

In general, the manifolds aren’t flat. Center manifold theory gives a method to approximate the
dynamics on the center manifold near a local bifurcation point, thereby allowing one to analytically
examine the bifurcation behavior.

3.3.1 Diagonal form and Jordan form

If an n × n matrix A has n eigenvectors and n distinct eigenvalues, it can be diagonalized as
Q−1AQ = D, where D is a diagonal matrix (has only zeros except along the main diagonal). Q
can be made up of columns which are the eigenvectors of A, and the elements of D will be the
corresponding eigenvalues.

Jordan form is a generalization of diagonal form. A matrix in Jordan form is upper triangular, i.e.,
it has only zeros off the main diagonal except that it can have 1’s immediately above some of the
diagonal elements. A matrix A can be put in Jordan form as P−1AP = J, where the columns of
P are the generalized eigenvectors of A: they form a basis guaranteed to span the vector space.
An eigenvector vi of A satisfies Avi = λivi, so (A−λiI)vi = 0. The generalized eigenvector vi+1
corresponding to eigenvalue λi satisfies Avi+1 = λivi+1 + vi, so (A−λiI)2vi+1 = (A−λiI)vi = 0.

4 Other tools

4.1 Multiple time scales: averaging method

The method of multiple scales is used frequently to find approximate solutions to physical prob-
lems. Here we use multiple time scales for systems which are nearly simple harmonic oscillators,
ẍ + x + εh(x, ẋ) = 0. If ε = 0, this would describe a simple harmonic oscillator with frequency
ω = 1, but we are concerned with 0 < ε � 1. The solution to this is an oscillation in which the
amplitude and phase slowly wander.

7



To apply the two-timing method, assume there are two time scales, τ = t and T = εt. Use
x = x0(τ,T ) + εx1(τ,T ) + O(ε2) and expand the derivatives (∂/∂t, ∂2/∂2t) in T and τ. Solving
the O(ε0) terms, you get x0(τ,T ) = A(T )cos(τ)+ B(T )sin(τ), or equivalently a sine with ampli-
tude and phase varying in T or two complex exponentials. Next, write down the O(ε1) terms
and. The key step is here: eliminate the “secular” terms. The solution to ẍ1 + x1 = cos(t) with
x1(0) = ẋ1(0) = 0 is x(t) = 1

2 tsin(t). This grows without bound; the solution to the original equa-
tion should be nearly a simple harmonic oscillator and should be bounded. We don’t actually find
x1; rather, we just make sure that it doesn’t grow without bound by solving for A(T ) and B(T )
that eliminate any secular terms in x1. This can be done by using sine and cosine identities to
find the cos(t) and sin(t) terms, or, more generally, by finding the coefficients of the cos(t) and
sin(t) terms in the Fourier expansion of RHS = −2∂τT x0 − h, which are the average over a cycle
of 1

2RHS cos(t) and 1
2 RHS cos(t).

In the “method of averaging”, the same equations for (A(t), B(t)) [or equivalently (r(t), φ(t))] are
derived slightly differently, using a method which doesn’t explicitly involve the removal of secular
terms. Rather, the only approximation is equating the amplitudes (A, B) with their average values
over one cycle of sin(t). Hence we can see that the two-timing method should work well for a
wide range of values of ε: as long as we can approximate the varying amplitude and phase of
an oscillatory solution as constant during a cycle of the oscillation, the two-timing solution will
hold. For example, if x(t) approaches a roughly sinusoidal limit cycle, the two-timing solution
will always be a good approximation to the amplitude of the limit cycle, even if it is sometimes
inaccurate in describing the approach from an initial condition to the limit cycle.

4.2 Time-integration by finite difference

Consider the differential equation

∂C(x, t)
∂t = F(C(x, t)) (9)

Where F(C) is used to represent the right hand side, which might include spatial derivates of
C(x, t). There are a few ways to approximate the slope of a function f (x) which is known only
at points xn = n ∆x. Writing fn ≡ f (n ∆x), we can approximate the slope at xn as 1

∆x( fn+1 − fn)

(forward difference), 1
∆x( fn − fn−1) (backward difference), or 1

2∆x( fn+1 − fn−1) (centered differ-
ence). One can show that errors in forward and backward difference methods go like ∆x whereas
in centered difference they go like ∆x2, so centered difference is often preferable.

4.2.1 Improved Euler’s method

Since we typically know the initial value, C(x, t = 0), and want to find C at future times, it can
be simplest to just use forward difference in time, ∂C(x,t)

∂t = 1
∆t (Cn+1 −Cn) = F(Cn), where Cn ≡

C(x,n∆t), or
Cn+1 = Cn +F(Cn)∆t (10)

This is called Euler’s method.
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A more accurate version of this is the improved Euler method, which uses something similar to
centered difference: The derivative is approximated as the average between the derivative at Cn
and at the “trial step” C̃n+1. First we evaluate the trial step using the standard Euler method,

C̃n+1 = Cn +F(Cn)∆t (11)

Then we evaluate the actual step using the average slope

Cn+1 = Cn +
1
2
[F(Cn)+F(C̃n+1)]∆t (12)

4.2.2 Leapfrog method

When you use centered difference in time, it’s called the leapfrog method:

Cn+1 = Cn−1 +F(Cn)2∆t (13)

You need to know the value at the first 2 time steps for this method, rather than just the initial
condition, so when using the Leapfrog method one often integrates the first step or two using the
improved Euler method.

We showed in Homework 2 that the leapfrog method can be unstable. The Robert filter is often
used to smooth the solution and avoid numerical instabilities. It is similar to adding a diffusive
term in time. Note that the second time derivative is approximated using centered difference as
∂2C(x,t)

∂t2 = 1
∆t2 (Cn+1 −2Cn +Cn−1). The Robert filter is added to the leapfrog scheme as

Cn+1 = Cn−1 +F(Cn)2∆t +RF(Cn −2Cn−1 +Cn−2) (14)

Where RF is the Robert filter coefficient. RF is typically chosen to be the smallest value that gives
smooth evolution of C.

5 Routes to chaos in dissipative systems

5.1 Lorentz Equations

ẋ = s(y− x) (15)
ẏ = rx− y− xz (16)
ż = xy−bz (17)

With parameters s > 0, r > 0, b > 0. At r < 1, the origin is stable, but it becomes unstable and 2
stable fixed points appear in a supercritical pitchfork bifurcation at r = 1. At r > rH = s(s+b+3)

s−b−1 ,
both the limit cycles undergo subcritical Hopf bifurcations and become unstable. Note that we
often take s = 10, b = 8/3, and vary r.
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5.2 Period-doubling route to chaos

5.2.1 Logistic map

The logistic map, which can be used to approximately describe population growth, is

xn+1 = rxn(1− xn) (18)

With 0 ≤ x ≤ 1 and 0 ≤ r ≤ 4. When 1 < r < 3, x∗ = 0 is an unstable fixed point and x∗ = 1−1/r
is a stable fixed point. At r > 3, x∗ = 1− 1/r becomes unstable and a 2-cycle is born (solution
jumps back and forth between two values of x). At r ≈ 3.449, the 2-cycle becomes unstable and a
4-cycle is born. At r > r∞ ≈ 3.570, chaotic solutions exist, as well as windows of periodic behavior
in small ranges of r.

When the fixed point x∗ = 1 − 1/r occurs at the maximum of the logistic map (xm = 1/2), it
is called superstable because the linearization yields | f ′(x∗)| = 0. Small perturbations around
this fixed point converge to zero as ηn+1 = (−2η0)

n; recall that for regular stable fixed points
perturbations converge as ηn = λnη0 with |λ|< 1. Fixed points of an n-cycle solution are similarly
superstable at particular values of r.

5.2.2 Universality

A unimodal map is a map where xn+1 vs xn is everywhere smooth and concave down, such that
there is a single maximum.

All unimodal maps undergo quantitatively similar period-doubling roots to chaos described by the
universal Feigenbaum constants δ, α:

δ = limn→∞
rn − rn−1
rn+1 − rn

≈ 4.669 (19)

where rn is the value of r where a 2n cycle first appears; and

α = limn→∞
dn

dn+1
≈−2.5029 (20)

where dn is the distance from the maximum of f (at xm = 1/2 for the logistic map) to the nearest
point x in a 2n-cycle (Strogatz, p. 373).

One way to approximate α is by use of the Feigenbaum function (renormalization)

g(x) = αg(g(x/α)), g′(0) = 0, g(0) = 1 (21)

Expand g(x) around the local maximum (x = 0) as g(x)≈ 1+bx2 and solve for α (Strogatz p. 384,
Schuster p. 47; note that Schuster defines α to be positive).

The above discussion is specific to unimodal maps. A quadratic map like the logistic map is
unimodal, but a quartic map like xn+1 = r− x4 is not unimodal since it’s not concave down at the
maximum.
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5.2.3 Renormalization

Renormalization is the process by which f 2(x,r), and ultimately f n(x,r), is rescaled to resemble
f (x,r) near the superstable point. At each step we scale f and x by a factor of α and shift r to the
superstable value for the next cycle.

It seems strange that every map with a quadratic maximum would exhibit the same behavior. A hint
lies in the fact that the maps all look the same infinitessimally near the hump (i.e., quadratic). The
renormalization approach explains that near r values that have superstable n-cycle orbits, f n(x)
sees only an x-value near the hump. This is a fixed point of f n(x); in f (x), where there is an
n-cycle rather than a fixed point, there are (n− 1) other x-values in the cycle and these can be far
from the hump.

5.3 Circle map

Qn+1 = Qn +W − K
2psin(2pQn) mod 1 (22)

The winding number (p/q) is found by dropping the mod 1 restriction from (22) and evaluating

p
q = limn→∞

Qn −Qo
n (23)

5.4 Summary of routes to chaos

We’ve studies three routes to chaos in dissipative systems. The following outline is adapted from
Schuster, Table 12.

• Period-doubling (Feigenbaum, 1978)

i. Pitchfork bifurcation

ii. Infinite cascade of period doublings, universal scaling parameters

iii. Logistic map: xn+1 = rxn(1− xn)

• Intermittency (Pomeau and Manneville, 1979)

i. Saddle-node (Type I), Hopf (Type II), or inverse period-doubling (Type III) bifurcation.

ii. Signal randomly alternates between nearly periodic and irregular behavior. Duration
of periodic bursts scales as ε−1/2 (Type I) or ε−1 (Type II, III).

iii. See Schuster, Table 7 (p. 98) for examples of Poincare map equations for all 3 types.

• Quasi-periodicity (Ruelle, Takens, and Newhouse, 1978)

i. Hopf bifurcation
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ii. Continuous system: Stationary solution → periodic motion → quasi-periodic motion
(2 spectral peaks, irrational ratio of frequencies) → 3-torus is “typically” unstable, so
chaos after third Hopf bifurcation (or possibly after slightly larger parameter value).
Discrete map: For small nonlinearity (K), winding number is rational (i.e., mode-
locked solution, resonance) in Arnold’s tongues and irrational outside the tongues;
when nonlinearity is increased, tongues overlap, and solution jumps irregularly be-
tween resonances.

iii. Periodically forced pendulum: θ̈+ γθ̇+ sinθ = Acos(ωt)+B
Circle map: Θn+1 = Θn +Ω− K

2π sin(2πΘn) mod 1

6 Fractal dimension

Fractals are, roughly, complex geometric shapes with structure at arbitrarily small scales, usually
with some degree of self-similarity.

6.1 Similarity and box dimensions

• Similarity dimension (for self-similar fractals): If scaling down by a factor of r leads to m
copies of the original set, then the similarity dimension is

dsim =
ln m
ln r

• Box dimension (one possible dimension definition for fractals that are not self-similar): If a
set S in 2-dimensional [D-dimensional] space requires N(ε) boxes [D-dimensional cubes] of
side ε to cover it, then its box dimension is

dbox = limε→0
ln N(ε)
ln(1/ε)

6.2 Multifractals: Dq and f (α)

The box counting dimension counts all cubes needed to cover the attractor equally, without regard
for the fact that some cubes are far more frequently visited (i.e., points are more dense). To take
into account the density of points, we can define a dimension spectrum Dq, where q determines
how much influence density variations have on the dimension. Note that q is continuous and can
be less than zero.

Dq =
1

1−q limε→0
ln I(q,ε)
ln(1/ε)

I(q,ε)≡ ΣN(ε)
i=1 µq

i

with N(ε) the number of boxes of size ε needed to cover the attractor. Here µi is the measure (i.e.,
some concept of density of the boxes). Often on an attractor µi is the frequency of visits to the
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box, µi = limT→∞
η(Ci,T )

T where η is the amount of time the orbit spends in Ci during 0 ≤ t ≤ T .
Note that when q = 0, or when all µi are equal, all boxes get equal weight so Dq reduces to the box
counting dimension.

Any measure µi which is not constant is called a multifractal measure. If we cover an attractor with
boxes of size ε, we can define the singularity index αi such that the density of points in the box µi
satisfies

µi = εαi

The multifractal spectrum f (α) is, roughly, the box dimension of the set of boxes with singularity
index αi (see Ott 9.1 for more exact definition).

The multifractal spectrum f (α) and dimension spectrum Dq contain the same information about
an attractor (or any set with a defined measure). They are related by

f (α(q)) = q α(q)− (q−1)Dq

α(q) =
d

dq
[

(q−1)Dq
]

7 A simple example

The hope of this example is to help us gain intuition about the behavior of chaotic systems in
general. (cf. Strogatz problems 10.3.7,9,10; Schuster section 2.1).

Question:
Prove that the logistic map is chaotic when r = 4.

Answer:
The logistic map with r = 4 is

xn+1 = 4xn(1− xn) (24)

We’ll start by transforming from x to a new space defined as

x ≡ sin2(πy) (25)

Note that the mapping is one to one in the range of the logistic map. Inserting (24) into (25) leads
(after a little algebra) to the “binary shift map” (or “Bernoulli shift”)

yn+1 = 2ynmod1 (26)

This is very good luck! (26), which exactly represents the logistic map with r = 4, is arguably
the single simplest nonlinear dynamic system. It is a piecewise linear one dimensional map, only
nonlinear because of the one discontinuity at y = 1/2. Furthermore, it turns out that the binary
shift map is even easier to analyze than might be expected.

To show that the deterministic system (26) is chaotic, first we need to demonstrate that it’s sensitive
to initial conditions. Consider two initial conditions, y0 and ỹ0 = y0 + δ0. Plugging this into (26)
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Figure 3: Logistic map and equivalent binary shift map.

shows that as long as we keep δ small enough so that it never straddles the map’s discontinuity, the
spacing between the trajectories will evolve as δn = 2nδ0 = eλδ0 with λ = log(2) > 0.

We’ve shown that a lot of systems have positive Lyapunov exponents, but we’ve found very few
systems that we can prove are irregular (i.e., the trajectory never repeats), which is the other con-
dition for chaos. As mentioned in class, no one has been able to prove this for the Lorentz system.
As a prelude to our proof that (26) is irregular, we’ll consider the decimal shift map,

yn+1 = 10ynmod1 (27)

In this map, at each iteration you multiply the previous value by 10 and then remove the integer
part: every iteration just shifts the decimal point one space to the right and removes the left-most
digit. Fixed points, then, are 0, 0.1̄1, 0.2̄2, ..., 0.9̄9. Initial conditions like 0.1̄2 lead to period-2
orbits.

Returning to the binary shift map (26), we see that we can treat it analogously to the decimal shift
map (27) if we write y as a binary number. Every iteration just removes the leading digit of the
initial condition. Hence every irrational initial condition leads to an irregular trajectory. Since the
irrational numbers fill the space [0,1] of initial conditions (the rationals are measure zero), nearly
every trajectory of the binary shift map is irregular.

Further discussion:
Note that at every iteration the binary shift map stretches by a factor of 2 and folds at the middle,
similar to the horseshoe map. Through the map’s stretching, at every iteration it zooms in on the
initial condition and extracts another digit of precision. The map needs to fold the space to keep
the region bounded.

To think about a trajectory of the logistic map with r = 4, we can take the initial condition x0, map
it to y0 via (25), and write y0 as a binary number. The trajectory just eats through the digits of y0.
Because, in general, y0 will be irrational, the orbit will be irregular.

This example is meant to illustrate how stretching and folding is the mechanism in chaotic systems
that leads to sensitivity to initial conditions and irregular trajectories.
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The key ingredient of a typical chaotic system which is missing from this discussion is a strange
attractor (i.e., after a long enough time, trajectories converge on a set of points with non-integer
fractal dimension). Although the logistic map does indeed have a strange attractor (d < 1), it’s
usually nicer to visualize strange attractors in 2D maps. We can make the binary shift map (26)
into a 2D map by adding a term to keep track of folding,

yn+1 =

{ 1
3x 0 ≤ y ≤ 1

2
1
3x+ 2

3
1
2 < y ≤ 1 (28)

(26) and (28) form the familiar Baker map from homework 9 #1. From that homework problem,
we see that the fractal structure of the attractor comes from infinitely repeated folding iterations.
Note that the attractor of the Baker map is a series of vertical stripes with spaces between them
that form a middle third Cantor set in the x̂ direction.
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