Problem #1

Standard Map:

\[\theta_{n+1} = \theta_n + \rho_n \mod 2\pi \]
\[p_{n+1} = p_n + k \sin \theta_{n+1} \]

To find fixed points \((\theta, p)\) solve equations:

(i) \[\theta = \theta + p \mod 2\pi \]
(ii) \[p = p + k \sin \theta \quad (-\pi < p < \pi) \]

(i) is satisfied by \(p = 0 \) in the interval \(|p| < \pi \).

For \(k = 0 \), (ii) is trivially satisfied for any \(\theta \).

If \(k > 0 \), (ii) \(\Rightarrow \theta = 0 \) or \(\pi \).

Thus, fixed points are:

\[
\begin{align*}
K = 0: & \quad (\theta, p) = (\alpha, 0) \text{ any } \alpha. \\
K > 0: & \quad (\theta, p) = (0, 0) \text{ or } (\pi, 0)
\end{align*}
\]
To complete the study of $f_1(\rho, \theta)$, we turn to the Jacobian:

$$
J = \begin{pmatrix}
\frac{\partial f_{11}}{\partial \rho} & \frac{\partial f_{11}}{\partial \theta} \\
\frac{\partial f_{12}}{\partial \rho} & \frac{\partial f_{12}}{\partial \theta}
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
K \cos(\theta + \rho) & 1 + K \cos(\theta + \rho)
\end{pmatrix}
$$

Thus, $\text{Trace}(J) = 2 + K \cos(\theta + \rho)$.

Investigate fixed points for $K \neq 0$:

$$(0, 0): \quad \text{Trace}(J) = 2 + K$$

Thus, $(0, 0)$ is hyperbolic for $K > 0$, hyperbolic with reflection for $0 < K < 0$, and elliptic for $-4 < K < 0$.

$$(\pi, 0): \quad \text{Trace}(J) = 2 - K$$

Similarly, $(\pi, 0)$ is hyperbolic for $K < 0$, hyperbolic with reflection for $K > 0$ and elliptic for $0 < K < 4$.

(Boundary cases: $K = \pm 4 \Rightarrow \text{Trace}(J) = -2$, is unstable, can be solved numerically. $K = 0 \Rightarrow \text{Trace}(J) = 2$, is unstable as well.)
Problem #2

Simple pendulum under gravity:

\[\mathcal{H} = \frac{1}{2} \dot{\phi}^2 - \cos(\phi) \]

Part a. Expand \(\cos(\phi) \) in Taylor series.

\[\cos(\phi) = 1 - \frac{1}{2!}\phi^2 + \frac{1}{4!}\phi^4 - \frac{1}{6!}\phi^6 + \ldots \]

\[\mathcal{H} = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} F \phi^2 - \frac{F}{8!} \phi^4 + \frac{F}{720} \phi^6 + \ldots \]

\{having dropped the constant term which will not affect dynamical equations.\}

Thus, \(C_1 = \frac{1}{2} F \), \(C_2 = \frac{1}{2} \), \(C_3 = -\frac{F}{8!} \), \(C_4 = \frac{F}{720} \).

Keep only quadratic term for now:

\[\mathcal{H} = \frac{1}{2} \dot{\phi}^2 + \frac{1}{2} F \phi^2 - \frac{F}{8!} \phi^4 + o(\phi^6) \]

Part b. Using the generating function \(S_0 = \sin^2 \theta \) for the unperturbed H.O.

(i) \(\mathcal{J} = \frac{\partial S_0}{\partial \dot{\theta}} = \frac{1}{2} \sqrt{\frac{F}{\phi}} \cos^2 \theta \)

(ii) \(\mathcal{P} = \frac{\partial S_0}{\partial \theta} = \sqrt{\frac{F}{\phi}} \sin \theta \)

\[\text{Eq.} \]
Thus, \(\cot \theta = \frac{\rho}{R^2} \)

\(R = (\frac{F}{G})^{1/2} \)

\(\csc^2 \phi = \frac{\rho^2 + R^2}{R^2} \)

and \(J = \frac{1}{2} R \rho^2 \left(\rho^2 + R^2 \right) \)

\(= \frac{1}{2} \frac{R^4}{R} \frac{1}{R^2} = \frac{R^2}{\sqrt{FG}} \)

or \(\lambda = \sqrt{FG} - J \) (as expected.)

from (i) and (ii), we have:

\(\rho^2 = 2RJ \cos^2 \omega \Rightarrow \frac{1}{6} \rho^2 = \frac{1}{2} \sqrt{FG} \left(\frac{23}{15} \right) \cos^2 \omega \)

\(\phi^2 = 2J \frac{1}{R} \sin^2 \omega \Rightarrow \frac{1}{4} \frac{2J^3}{R} \sin^2 \omega + \frac{1}{30} \frac{2J^3}{R^2} \sin^4 \omega + \cdots \)

\(\lambda = \omega J - \frac{1}{6} GJ^2 \sin^2 \omega + \frac{1}{30} \frac{GJ^3}{R^2} \sin^4 \omega + \cdots \)

\(\omega_0 = \sqrt{FG} \). Expanding in powers of \(\sin \omega \):

\(\lambda_0 = \omega_0 J \)

\(\lambda_1 = -\frac{2J^2}{48} \left(3 - 4 \cos \omega + \cos 4\omega \right) \)

\(\lambda_2 = \frac{2J^3}{288\omega_0} \left(10 - 15 \cos \omega + 6 \cos 4\omega - \cos 6\omega \right) \)
\[\bar{\mathbf{r}} = \mathbf{r}_0 (\mathbf{j}) + \mathbf{r}_1 (\mathbf{j}, \bar{\mathbf{o}}) + \mathbf{r}_2 (\mathbf{j}, \bar{\mathbf{o}}) + \ldots \]

\[\langle \mathbf{r}_0 (\mathbf{j}) \rangle = \omega_0 \mathbf{j} \]

\[\langle \mathbf{r}_1 (\mathbf{j}, \bar{\mathbf{o}}) \rangle = -\frac{G \bar{\mathbf{j}}^2}{16} \]

\[\langle \mathbf{r}_2 (\mathbf{j}, \bar{\mathbf{o}}) \rangle = \frac{G^2 \bar{\mathbf{j}}^3}{2 \pi \omega_0} \]

Thus:

\[\omega = \frac{\mathbf{d} \mathbf{r}_0}{\mathbf{d} \mathbf{j}} = \omega_0 - \frac{1}{8} G \bar{\mathbf{j}} + \frac{G^2 \bar{\mathbf{j}}^2}{96 \omega_0} \]

As \(\omega \) has small machine accuracy to first order (\(\zeta > 0 \)).

\[\text{Part 2.} \quad \frac{d S_1}{d \bar{\mathbf{o}}} = \mathbf{j}_1 - \langle \mathbf{j}_1 \rangle = \frac{G \bar{\mathbf{j}}^2}{4 \omega_0} \left(4 \cos 2\bar{\mathbf{o}} - \cos 4\bar{\mathbf{o}} \right) \]

\[\Rightarrow \frac{d S_1}{d \bar{\mathbf{o}}} = \frac{G \bar{\mathbf{j}}^2}{4 \omega_0} \left(4 \cos 2\bar{\mathbf{o}} - \cos 4\bar{\mathbf{o}} \right), \text{ lowest order.} \]

\[S_1 = \frac{G \bar{\mathbf{j}}^2}{4 \omega_0} \left(2 \sin 2\bar{\mathbf{o}} - \frac{1}{4} \sin 4\bar{\mathbf{o}} \right) \]

\[\text{Or.} \quad S_1 = \frac{G \bar{\mathbf{j}}^2}{192 \omega_0} \left(8 \sin 2\bar{\mathbf{o}} - \sin 4\bar{\mathbf{o}} \right) \]
\[\mathbf{Q} = \mathbf{0} - \frac{\partial}{\partial \mathbf{j}} \left(\mathbf{F}(\mathbf{j}, \mathbf{0}) \right) \]

\[\mathbf{Q} = \mathbf{0} - \frac{6 \mathbf{j}}{16 \omega_0} \left(8 \sin \theta - \sin \phi \mathbf{e}_\phi \right) \]

\[\mathbf{J} = \mathbf{j} + \frac{\partial \mathbf{F}_1(\mathbf{j}, \mathbf{0})}{\partial \mathbf{0}} \]

\[\mathbf{J} = \mathbf{j} + \frac{6 \mathbf{j}}{4 \mathbf{1} \omega_0} \left(4 \cos \theta - \sin \phi \mathbf{e}_\phi \right) \]

Post 2. Second-order corrections were carried out as shown above (see pg. 4 for \(\mathbf{h}_2 \), 5 for \(\mathbf{k}_2 \) and \(\mathbf{l}_2 \)).

Plotting \(\mathbf{w} \) as a function of \(\omega \mathbf{J} = \mathbf{E}_0 \),

\[\mathbf{w} - \mathbf{w}_0 = \mathbf{w}_1 + \mathbf{w}_2 \]
part 6.

\[f(x, y, t^1) = \sin kx \sin \pi y + \varepsilon \cos \pi x \cos \pi y. \]

\[e = 0 : \quad f(x, y, t^1) = \sin kx \sin \pi y \]

(i) \[\frac{\partial f}{\partial y} = u_x \quad , \quad (ii) \quad \frac{\partial f}{\partial x} = u_y \]

(i) \[u_x = -k \sin kx \cos \pi y = \frac{\partial x}{\partial t} \]

(ii) \[u_y = k \cos kx \sin \pi y = \frac{\partial y}{\partial t} \]

part c. Numerically integrating with MATLAB produces trajectories which remain close to a streamline for a while, then diverge to neighboring streamlines.
Problem 4

Shilnikov Phenomenon.

\[\frac{dx}{dt} = f(x, y; \mu), \quad \frac{dy}{dt} = g(x, y; \mu) \]

\[\begin{align*}
\pi_0 & \quad \mu < 0 \\
\pi_1 & \quad \mu = 0 \\
\pi_2 & \quad \mu > 0
\end{align*} \]

Part a: For a local map we may linearize the system above, e.g.

\[\begin{align*}
\frac{dx}{dt} & = f_x x + f_y y \\
\frac{dy}{dt} & = g_x x + g_y y
\end{align*} \]

Thus

\[\begin{pmatrix} x \\ y \end{pmatrix} = c_1 e^{\lambda_1 t} \mathbf{V}_1 + c_2 e^{\lambda_2 t} \mathbf{V}_2 \]

where \(\lambda_{1,2} \) are eigenvalues of Jacobian at the origin, \(\mathbf{V}_{1,2} \) are eigenvectors and \(c_{1,2} \) are specified by initial perturbation.
new, \(x(t) \approx x_0 e^{\lambda t} \) for small \(x_0 \)

and \(T \) is given by \(x(T) = x_0 e^{\lambda T} = \epsilon \)

\[
T = \frac{\ln \left(\frac{\epsilon}{x_0} \right)}{\lambda}
\]

where \(T \) is the time of flight between \(T_1 \) and \(T_2 \) in linearized region around the origin.

Furthermore, at \(T_1, \ y(T_1) = \epsilon e^{\gamma T} = \epsilon e^{\gamma \ln \left(\frac{\epsilon}{x_0} \right)} \)

or \(y(T_1) = \epsilon \cdot \left(\frac{\epsilon}{x_0} \right)^{\gamma/\lambda} \)

Finally, the map is written

\[
M(x, y; \tau) = \left(\sum \epsilon \cdot \left(\frac{\epsilon}{x} \right)^{\gamma/\lambda} \right)
\]

part b. Assuming, as discussed in lecture, that

the action of non-linearities amounts to taking

points on \(\Pi_1 \), distorting them by stretching and translating to \(\Pi_0 \) by sending \(y \to -x \), the

map should be:

\[
M_1 \equiv \left(\begin{array}{c} x' \\ y' \\ \end{array} \right) = \left(\begin{array}{cc} 0 & \epsilon \\ 0 & \epsilon \end{array} \right) \left(\begin{array}{c} x \\ y \\ \end{array} \right) + \left(\begin{array}{c} 0 \\ -1 \\ \end{array} \right)
\]

send \(y \to -x \) on \(\Pi_0 \)
We need only consider the equation for x. Thus,
\[M_2(1 + x^2) = \]
\[= M_2 \left(\varepsilon \left(\frac{\varepsilon}{x} \right)^{\frac{\varepsilon}{\mu}} \right) \]
\[= \left(\begin{array}{c}
\varepsilon \\
\varepsilon^{1/2} x^{1/2}
\end{array} \right) \left(\begin{array}{c}
\frac{\varepsilon}{x} \\
\mu
\end{array} \right) + \left(\begin{array}{c}
\varepsilon \\
-\mu
\end{array} \right) \]
\[\Rightarrow \lambda_{1,2} = c \cdot \varepsilon \left(\frac{\varepsilon}{x} \right)^{\frac{\varepsilon}{\mu}} - \mu. \]

Fixed points \[x_{\lambda_{1,2}} = x_c = x^c \]
\[x^c = a \varepsilon \left(\frac{\varepsilon}{x^c} \right)^{\frac{\varepsilon}{\mu}} - \mu \]
\[= a \varepsilon \left(\frac{x^c}{\varepsilon} \right)^{\frac{\varepsilon}{\mu}} - \mu. \]

Stability is determined by \(\frac{dx_{\lambda_{1,2}}}{dx_c} \) as usual:
\[\frac{dx_{\lambda_{1,2}}}{dx_c} = 0 \cdot \frac{dy_{\lambda_{1,2}}}{dx_c} \left(\frac{dy_{\lambda_{1,2}}}{dx_c} \right)^{-1} \]
\[= 0 \cdot \frac{\mu x^c - \mu}{\lambda} \cdot \frac{x^c}{\mu} \]
\[= \frac{\mu}{\lambda} \cdot \frac{x^c - \mu}{x^c}. \]
Thus, for \(\mu = 0 \), the fixed point is stable for \(\frac{|x|}{\lambda} < 1 \) and unstable for \(\frac{|x|}{\lambda} > 1 \), implying that we have a limit cycle for

\[
\frac{|x|}{\lambda} < 1.
\]