Homework #6
Nonlinear dynamics and chaos

1. Calculate a numerical approximation for
 \[
 \lim_{n \to \infty} \frac{r_n - r_{n-1}}{r_{n+1} - r_n}
 \]
 for the following two maps
 \[
 x_{n+1} = r \sin(\pi x_n), \quad 0 \leq r \leq 1 \quad \text{(the sine map)} \quad (1)

 x_{n+1} = r - x_n^4 \quad (2)
 \]
 by iterating the maps for different \(r\)-values and finding the \(r\) values at which period doubling(s) occur. Compare the results to \(\delta\) for the logistic map and explain.

2. (Strogatz 10.7.3,4) some simple renormalization-related issues:
 (a) Show that if \(g(x)\) is a fixed point of the doubling transformation, that is,
 \[
 g(x) = -\alpha g \left(\frac{x}{-\alpha} \right) \equiv T[g],
 \]
 so is \(\mu g(x/\mu)\).
 (b) show that \(g(x)\) crosses the line \(y = \pm x\) an infinite number of times by showing that
 if \(x^*\) is a fixed point of \(g(x)\), so is \(-\alpha x^*\).
 (c) Calculate an approximation to the universal \(\alpha\) for the period doubling route to
 chaos. Start with the map \(f(x, r) = r - x^2\), assume a two-term expansion for the
 universal function:
 \[
 g(x) = 1 + c_2 x^2.
 \]
 and calculate \(c_2\) and \(\alpha\) that approximately satisfy the functional equation for \(g(x)\).

3. Show that
 \[
 g_{i-1}(x) = (-\alpha) g_i \left(\frac{x}{\alpha} \right) \equiv T[g_i(x)]
 \]
 Explain each stage in your derivation. (Schuster derives this, so you just need to explain
 what he does).

4. Do only one of the following two questions:
 (a) read, understand, and reproduce the approach of Strogatz “renormalization for
 pedestrians” pages 384-387 in order to analytically calculate an approximate to
 both \(\delta\) and \(\alpha\) for a quadratic maximum map. Skip example 10.7.2, but do example
 10.7.3.
 (b) Challenge question/ extra(!) credit: First the easier part: Find \(\alpha\) for quartic func-
 tions (such as \(x_{n+1} = r - x_n^4\)) using the approach of question 2c
 Next: a challenge in the best sense of the word (i.e. I have not tried this myself, and
 I don’t know that it is possible). Follow the approach of Strogatz “renormalization
 for pedestrians” on page 384-387 in order to analytically calculate both \(\delta\) and \(\alpha\) for
 a quartic maximum function (such as \(x_{n+1} = r - x_n^4\)). Compare your analytically
 derived results to the numerical approximation for \(\delta\) from question 1.