NONLINEAR
DYNAMICS AND
CHAOS

With Applications to
Physics, Biology, Chemistry,
and Engineering

STEVEN H. STROGATZ

PERSEUS BOOKS
Cambridge, Massachusetts

DA AL R S SR

T

A A T

ST il 2 -
s S O G A] T

2.8 Solving Equations on the Computer

Throughout this chapter we have used graphical and analytical methods to analyze
first-order systems. Every budding dynamicist should master a third tool: numeri-
cal methods. In the old days, numerical methods were impractical because they re-
quired enormous amounts of tedious hand-calculation. But all that has changed,
thanks to the computer. Computers enable us to approximate the solutions to ana-
lytically intractable problems, and also to visualize those solutions. In this section
we take our first look at dynamics on the computer, in the context of numerical in-
tegration of x = f(x).

Numerical integration is a vast subject. We will barely scratch the surface. See
Chapter 15 of Press et al. (1986) for an excellent treatment.

Euler’s Method
The problem can be posed this way: given the differential equation x = f(x),
subject to the condition x = x, at t =1, find a systematic way to approximate the
solution x(t).
Suppose we use the vector field interpretation of x = f(x). That is, we think of a
fluid flowing steadily on the x-axis, with velocity f(x) at the location x. Imagine

we’re riding along with a phase point being carried downstream by the fluid. Ini- -

tially we’re at x,, and the local velocity is Sf(xy). If we flow for a short time At,
we’ll have moved a distance f(x,)At, because distance = rate x time . Of course,
that’s not quite right, because our velocity was changing a little bit throughout the
step. But over a sufficiently small step, the velocity will be nearly constant and our
approximation should be reasonably good. Hence our new position x(t, + At) is ap-
proximately x, + f(x,)Ar. Let’s call this approximation x,. Thus

x(ty + Af) = x; = x5 + f(x4)At.

Now we iterate. Our approximation has taken us to a new location X, ; our new
velocity is f(x,); we step forward to x, = x, + f(x,)At; and so on. In general, the
update rule is

'xn+l = X” +f(x")At-

This is the simplest possible numerical integration scheme. It is known as Euler’s
method.

Euler’s method can be visualized by plotting x versus ¢ (Figure 2.8.1). The
curve shows the exact solution x(), and the open dots show its values x(t,) at the
discrete times f, ={, +nAt. The black dots show the approximate values given by
the Euler method As you can see, the approximation gets bad in a hurry unless At
is extremely small. Hence Euler’s method is not recommended in practice, but it
contains the conceptual essence of the more accurate methods to be discussed next.

32 FLOWS ON THE LINE

ee

xX),
the

fa
ine
(ni-
At
rse,
the
our

ap-

1ew
~ the

er’s

The
i the
n by
VAt
ut it
1eXt.

Euler
exact
X
X(tl)
X0
T T T
s h b
Figure 2.8.1
Refinements

One problem with the Euler method is that it estimates the derivative only at
the left end of the time interval between #, and ¢,,, . A more sensible approach
would be to use the average derivative across this interval. This is the idea behind
the improved Euler method. We first take a trial step across the interval, using the
Euler method. This produces a trial value X,,, = x, + f(x,)At; the tilde above the
x indicates that this is a tentative step, used only as a probe. Now that we’ve esti-
mated the derivative on both ends of the interval, we average f(x,) and f(X,,,),
and use that to take the real step across the interval. Thus the improved Euler
method is

X =X, + f(x,)At (the trial step)

X = X, + 5[f(x) + F(E,0)] AL (the real step)

This method is more ‘accurate than the Euler method, in the sense that it tends to
make a smaller error E =|x(t,)— x,| for a given stepsize At. In both cases, the
error E— 0 as At — 0, but the error decreases faster for the improved Euler
method. One can show that E o< At for the Euler method, but E o (Af)* for the im-
proved Euler method (Exercises 2.8.7 and 2.8.8). In the jargon of numerical analy-
sis, the Euler method is first order, whereas the improved Euler method is second
order.

Methods of third, fourth, and even higher orders have been concocted, but you
should realize that higher order methods are not necessarily superior. Higher order
methods require more calculations and function evaluations, so there’s a computa-
tional cost associated with them. In practice, a good balance is achieved by the
Jourth-order Runge—Kutta method. To find x,,, in terms of x,, this method first
requires us to calculate the following four numbers (cunningly chosen, as you’ll
see in Exercise 2.8.9):

2.8 SOLVING EQUATIONS ON THE COMPUTER 33

k, = f(x,) At
k, = f(x, +%k)At

ky=f(x, ++k,) At
k, = f(x, +ky)At.

Then x,,, is given by
X, =X, + 5k +2k, + 2k, + k).

This method generally gives accurate results without requiring an excessively
small stepsize At. Of course, some problems are nastier, and may require small
steps in certain time intervals, while permitting very large steps elsewhere. In such
cases, you may want to use a Runge—Kutta routine with an automatic stepsize con-
trol; see Press et al. (1986) for details.

Now that computers are so fast, you may wonder why we don’t just pick a tiny
At once and for all. The trouble is that excessively many computations will occur,
and each one carries a penalty in the form of round-off error. Computers don’t
have infinite accuracy—they don’t distinguish between numbers that differ by
some small amount 8. For numbers of order 1, typically 6 = 1077 for single preci-
sion and & = 107'® for double precision. Round-off error occurs during every cal-
culation, and will begin to accumulate in a serious way if Az is too small. See
Hubbard and West (1991) for a good discussion.

Practical Matiters

You have several options if you want to solve differential equations on the com-
puter. If you like to do things yourself, you can write your own numerical integra-
tion routines, and plot the results using whatever graphics facilities are available.
The information given above should be enough to get you started. For further guid-
ance, consult Press et al. (1986); they provide sample routines written in Fortran,
C, and Pascal.

A second option is to use existing packages for numerical methods. The soft-
ware libraries by IMSL and NAG have a wide variety of state-of-the-art numerical
integrators. These libraries are well documented, reliable, and flexible, and can be
found at most university computing centers or networks. The packages Matlab,
Mathematica, and Maple are more interactive and also have programs for solving
ordinary differential equations.

The final option is for people who want to explore dynamics, not computing.
Dynamical systems software has recently become available for personal comput-
ers. All you have to do is type in the equations and the parameters; the program
solves the equations numerically and plots the results. Some recommended pro-
grams are Phaser (Kocak 1989) for the IBM PC or MacMath (Hubbard and West

34 FLOWS ON THE LINE

