NUMERICAL
PREDICTION
~ AND
DYNAMIC
METEOROLOGY

SECOND EDITION

George J. Haltiner, Ph.D.
Roger Terry Williams, Ph.D.

U.S. Naval Postgraduate School

JOHN WILEY & SONS
New York Chichester Brisbane Toronto Singapore




A

CHAPTER 5

Numerical Methods

5.1 IN TRODUCTION

The previous chapters have presented the fundamental hydrodynamical equa-
tions that govern atmospheric motions and also described various types of dis-
turbances, or waves, that characterize these motions—their velocity, pressure
and temperature distributions, their growth and decay, and their sources of
energy. V. Bjerknes (1904) is recognized as the first to suggest that, given
observed initial fields of mass and velocity, it would be possible in principle
to determine the mass and velocity distribution at any future time by sclving
the hydrodynamical equations as an initial value problem. Although these non-
linear partial differential equations do not have, in general, analytic or closed
solutions, they can be integrated by numerical methods to yield a forecast of
the meteorological variables for a future time. Present numerical weather pre-
diction models, as they are called, show skill over climatological or persistence
forecasts for about one week and even longer in some respects.

A pioneering attempt to predict the weather by numerical integration was
made by an Englishman, L. F. Richardson (1922), during World War I. Al-
though his procedure was basically sound, there were some flaws that resulted
in large errors with respect to the observed fields. Moreover, the enormous
computing time required to solve the equations in the general form he used
discouraged any immediate further attempts at numerical weather prediction,
even to find out why Richardson’s forecast went awry. Just after World War
IT the electronic computer (ENIAC) was installed at Princeton University and
Charney, Fjértoft, and von Neumann (1950) made the first successful numerical
forecast at 500 mb with a simple barotropic vorticity model, which was a
development by C. G. Rossby in the late 1930s and early 1940s. In fact, there
had been considerable progress in both numerical methods and dynamic mete-
orology between the two wars that made the Princeton numerical forecast more
timely than Richardson’s effort. This chapter and the next will deal with some
numerical methods currently applied to weather prediction. '

5-2 FINITE DIFFERENCE
METHODS

The most common numerical integration procedure for weather prediction has
been the finite-difference method in which the derivatives in the differential
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5-2 FINITE DIFFERENCE METHODSs 109

equations of motion are replaced by finite difference approximations at a discrete
set of points in space and time. The resulting set of equations, with appropriate
restrictions, can then be solved by algebraic methods.

Taylor series may be used to establish appropriate finite difference ap-
proximations to derivatives as follows:

2 3

Ax Ax
f&x = Ax) = fx) = f(x)Ax +f"(X)2—! * W= 6D

where for later convenience, Ax > 0. Using only the + series and solving for
f'(x) gives

oy SO+ A — fx)
fx) = Ax + R (5-2)

where the term of highest order in the remainder R is —f"(x)Ax/2. When R is
dropped in (5-2) the remaining approximation for the derivative f’(x), referred
to as a forward difference for Ax > 0, is said to be of order Ax, denoted by
the symbol O (Ax). The latter represents the truncation error of the finite dif-
ference approximation.

If the series with the negative sign in (5-2) is subtracted from the positive
series, the following centered difference approximation for f'(x) results:

fx + Ax) — f(x — Ax)
2Ax

On the other hand, the addition of the two series in (5-1) leads to

[+ Ax) = 2f(x) + f(x — Ax)
B Ax?

flx) = + O(AXD) (5-3)

) + O(Ax?) (5-4)
In both cases the truncation error is of order Ax* giving more accurate approx-
imations than from (5-2), which might have been expected from geometric
considerations. : ‘

Since wavelike motions are characteristic of the atmosphere it is of interest
to apply the centered difference approximations for f'(x) to a simple harmonic
function, f(x) = A sin (2mx/L). The ratio of the finite difference approximation,
say f'p(x) to the true value of f'(x) is readily found to be

Fp()  sin@wAxL)
f'®  2mAx/L

Since the ratio (sina)/cc approaches 1 as o approaches 0, it is evident that the
finite difference approximation approaches the true value of f'(x) as Ax/L ap-
proaches zero. Thus the truncation error will be small when Ax is small com-
pared to L. On the other hand, the error can be extremely bad for relatively
small L, for example, for L = 2Ax, f’ p (x) = 0 for all x, regardless of the true
value of f'(x).

(5-5)
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Figure 5-5 shows an x,t plot of discrete gridpoints. The triangle of large
dots represents those (m,n) gridpoints on which the solution for the point (5,3)
depends or the domain of dependence, or influence, when the centered finite
difference or leapfrog scheme is used on the advection equation. The equation
for the left side of the triangle is: t — (A#/Ax) x = constant. Now suppose that
the characteristic through the point (5,3) is the line labeled

X — ¢t = x, (characteristic)

Since it was shown earlier that the solution of the differential equation prop-
agates along characteristics, the true solution at the point (5,3) must be F (x,).
However, in the example illustrated here, the point x, lies outside the domain
of dependence of the point (5,3); hence the solution obtained from the difference
equation cannot give a correct value to the solution of the differential equation.
Note that in this case the slope of the triangle side exceeds that of the charac-
teristic, that is,

-A——t- > E or E—A—t >1

Ax ¢ Ax
which violates the computational stability criterion (5-32); so a satisfactory
solution to the difference equation cannot be expected.

Another interesting feature of Figure 5-5 is that the lattice of points in the
domain of dependence on which the solution to the difference equation for a
given point depends consists only of alternate points, except for + = 0. This
peculiarity can lead to the separation of the solutions at adjacent points, pri-
marily due to the computational mode that ‘‘flip-flops’” at every time step.

5-4 SOME BASIC CONCEPTS

Having studied the numerical solution to a simple, but important, linear partial
differential equation, it is now desirable to discuss some basic, general concepts
related to the solution of partial differential equations by numerical methods.
First, if a difference equation is substituted for a differential equation,
intuitively it would seem necessary that if a desirable result is to be obtained,
the former should approach the latter as the finite difference increments are

reduced to zero.

Definition A difference equation is said to be consistent or compatible when it ap-
proaches the corresponding differential equation as the finite difference increments, At

Ax, etc. approach zero.

Since the difference equation is only an approximation to the differential
equation, the accuracy of the former may be measured by taking the difference
between the two, which is called the truncation error Tr,

Tr = difference eq — differential eq (5-33)
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Figure 5.5 Illustrates the domain of
dependence of the finite difference so-
lution at » = 3 and m = 5.

As an example, consider the advection equation previously examined for which

— F Fm+1,n — Fm—l,n . (aF aF

d masl g — + c—-—> (5-34)

Tr — mn+1

2At 2Ax ot dx

To interpret the significance of truncation error, it is necessary to expand the
first two terms in Taylor series. :
3F A OF AP

-+ — — +

oF At
F . =F  *——+ 3 + —
= i ot 1! ot” 2! or 3!
Similar series can be written for F, ., ,. When these series are substituted into
(5-34), the result is
FF AP O°F Ax® ,
76 +c Py —g— + higher powers of Ar and Ax (5-35)
or sometimes simply as, 7r = O(A#*) + O(Ax%). Nevertheless, the size of the

coefficients is also important.
It is evident that the difference equation approximation in (5-34) is con-

sistent with the differential equation, that is,

Tr— O as At, Ax— 0 (5-36)

Tr =

It is quite clear from the previous example that consistency alone is not
sufficient to guarantee that the solution of the difference equation will be a good
approximation to the solution of the differential equation, which is, after all,
the real goal. Again, from intuitive considerations, it would be reasonable to
expect that an acceptable solution to the difference equation over some specified
interval of space and time would approach the solution of the differential equa-
tion as the finite difference increments Az, Ax, etc., approach zero.
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Definition A finite-difference solution is said to be convergent if, for a fixed time
interval, T = nAt, it approaches the solution of the differential equation as the incre-
ments Az, Ax, etc. approach zero.

Definition If a difference scheme gives a convergent solution for any initial conditions,
the scheme is also said to be convergent.

The next definition concerns the stability of a difference system and may
be expressed in several ways. In simple terms, any numerical scheme that allows
a growth of error that eventually ‘‘swamps’’ the true solution is unstable. The
preceding statement is rather vague, however, and a more specific mathematical
definition is desirable. Several usable definitions follow.

Definition I According to Richtmyer énd Morton (1967) the difference scheme is stable
if its solutions remain uniformly bounded functions of the initial state for all sufficiently

small Az (that is, 0 < At <71, and n At = T).

Definition II When the corresponding differential solution is bounded, a finite differ-
ence scheme is unstable if, for a fixed spatial grid and homogeneous boundary condi-
tions, there exist initial disturbances for which the finite-difference solution becomes
unbounded as » goes to infinity. In general this is a more stringent requirement than
Definition 1.

Definition IIT A set of difference equations is stable if the cumulative effect of all
round-off errors remains negligible as » increases.

The question of convergence is difficult to investigate because it involves
derivatives of the true solution for which the upper and lower bounds are not
known. On the other hand, stability is generally not as difficult to ascertain;
and fortunately, there is an important theorem by Lax that relates consistency
and stability to convergence.

Lax Equivalence Theorem (Richtmyer and Morton, 1967)

Given a properly posed, linear initial-value problem and a finite difference
approximation that satisfies the consistency condition, stability (according to Definition
1) is the necessary and sufficient condition for convergence.

In the example of the leapfrog scheme applied to the advection equation
discussed earlier, the difference equation is consistent and was shown to be
stable for cAt/Ax = 1. It was further shown to converge for a particular initial
state. On the other hand, when cA#/Ax > 1, convergence is not possible for
all initial states (e.g., all wavelengths).

5-5 STABILITY ANALYSIS

There are several methods of stability analysis. Obviously, when an analytical
solution of the difference equation can be found, such as in the application of

the leapfrog scheme to the advection equation, the solution can be examined -

directly. However in many cases other methods are required.
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5-5 STABILITY ANALYSIS 123

5-5-1 'The Matrix Method

In the matrix method the solution of the difference system at every gridpoint
at the time (n + 1)Ar is assumed to be expressible in terms of the values at

time nAt as follows:
U, =AT, (5-37)

where U is a vector representing all of the dependent variables (perhaps aug-
mented) at all of the gridpoints and A is a matrix representing the difference
system.

As an example, consider the following parabolic differential and corre-
sponding difference equations

oF O°F
— = K— 5-38
ot o ( )
and
F_..—F Foo,—2F  +F
mn mn — K m N mn m N 5_39
At ' Ax? ( )
or
Fopir =1, + (L=20F, +7rF,, . . r=KAt/AX* (5-40)

If, for simplicity, the boundary values are taken to be Fo,=F,,6 = 0, then
(5-40) can be written in the matrix form (5-37).

CF, ] 1 —2r r 0 0.. 07[F,7
Fy i r 1 = 2r ¥ 0... 0 F,, _
_ 0 | r 1 =2r r. .. 0 . (5-41)
Ly | 0 0 1= 2r)|F, ]
It follows from (5-41) that
F,=AF,_, =A@AF,_ ) =... . A"F, (5-42)

where F, is the vector representing the initial conditions. The matrix A is re-
ferred to as the amplification matrix.

It is apparent from (5-42) that the question of computational stability is
related to the properties of the matrix A, which will now be discussed as needed.
The so-called eigenvalues (or characteristic values) A, of A are the roots of the
characteristic equation

A — N =0 (5-43)

where I is the identity matrix and the bars denote a determinant. In the example
(5-41), the determinant is of order J/ — 1, hence the characteristic equation has
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the same order and there are J — 1 eigenvalues. Associated with each eigen-
value is an eigenvector v,, which satisfies the equation

Av, = \v, k=12, ... (5-44)

When the eigenvectors form a complete, linearly independent set, an arbitrary
initial condition, such as F, in (5-42), can be expressed as a linear combination
of the eigenvectors:

F, = ; Cv, C(5.45)

where C, are constants. A sufficient condition for the matrix A to have a com-
plete set of eigenvectors is that the eigenvalues be nonzero and differ from one
another. However, under certain circumstances, a repeated eigenvalue may also
lead to a complete set of linearly independent vectors. Also, real symmetric
matrices, Hermitian matrices and normal matrices lead to linearly independent
sets. In any event, for the examples considered here and usually those of com-
mon interest, the sufficiency condition is fulfilled. Assuming this to be the case,
substitution of (5-45) into (5-42) and use of (5-44) gives

Fy= > CAW, = D C, A" "Av, = > C, A" '\, . . .
k=1 k k

Repeating this procedure leads to

F, =2 C:\ v, (5-46)
k—1

It is evident from (5-46) that the solution F, will remain bounded, as required
by Definitions I and II for a stable difference scheme, if the eigenvalues have
magnitudes less or equal to one, that is,

I\ = 1forall k (5-47)
In general, a particular nonzero eigenmode will amplify, remain neutral,

or dampen according to whether its associated eigenvalue has a magnitude
greater, equal, or less than one,

> 1, amplify
I\J = 1, neutral (5-48)

< 1, dampen

Strictly speaking, however, the condition (5-47) is more stringent than
required for stability according to Definition I. The eigenvalues may be per-
mitted to exceed one by a term having a magnitude no larger than order Az,
that is,

N =1+0(p (5-49)
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This condition will permit exponential growth of the solution, but the solution
remains bounded for a fixed time interval, say 7. Such amplification may be
fitting and proper for the physical-mathematical system, for example, with baro-
clinic instability. Further discussion of this case will be given later.

Returning to (5-47), note that a difference system may fail to meet this
stability condition by having one (or more) eigenvalues exceed 1 in magnitude,
yet if that eigenmode (vector) were not present in the initial state F,, in theory
the solution F, would not amplify. However in actual practice, round-off errors
occur, hence all modes are soon present and the numerical solution would grow
exponentially. A second related point is that if some modes are considered to
be undesirable ‘‘noise,’’ it may be feasible to filter them from the initial state
with the aim of eliminating them from the solution. The elimination may be
only temporary, however, since there may be physical or mathematical mech-
anisms within the difference system, as well as round-off errors, that regenerate
the undesirable modes causing them to reappear. If this happens, steps can be
taken to suppress them during the integration procedure, perhaps by diffusion
terms, or by periodically applying explicit space or time filters. Another pos-
sibility is to judiciously choose a differencing scheme that will selectively
dampen certain modes.

To consider the matter of error growth further, suppose that errors were
to appear at some time, say ¢ = 0 for convenience, and assume for simplicity
that no further errors are subsequently introduced. If F’, represents the contam-
inated value, the contaminated solution after » time steps, according to (5-42),
will be

F', = A"F, (5-50)
If the error after n time steps is defined to be
€n = Fn - F,n
it follows from (5-42) to (5-50) that
€, = A'€, (5-51)

which is precisely the same form as (5-42). Next, €, can be expressed in the
same manner as (5-45) and €, is similar to (5-46):

€, = 2 ENv, (5-52) -

Thus the evolution of errors parallels that of the finite difference solution, mode
by mode. Since this holds for round-off errors as well as other types, Definition
1II is a useful practical definition for stability. Although computational stability
according to Definitions I and II is unrelated to round-off error, from a pragmatic
point of view Definition III is appropriate since actual computation invariably
involves round-off error. Moreover, the same condition for the computational
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stability of a difference scheme results whether couched in terms of the differ-

ence solution or error growth.
Return now to the example used in this section for illustration and express

the matrix in (5-41) as the sum of the identity matrix / and a tridiagonal matrix
M as follows:

A=1+rM
where -2 1 0 0
M = 1 -2 1
0 1 -2 1
| 1 -2 ]

It can be shown that if an arbitrary matrix A is a rational function of a second
matrix M, then the eigenvalues of A are the same rational function of the

eigenvalues of M, that is,
ifA =fM) then o, = f(B)

where o, and B, are the eigenvalues of A and M, respectively. Also the eigen-
values of a tridiagonal matrix of order / — 1, with elements a, b, and ¢ in that
order, are

k
Bk=b+2\/acc0s-—;—T k=12...7-1

Using the foregoing results gives the following eigenvalues for the matrix A:

, k
)\k=1—4rsin2—21]r k=12...7-1

It is readily seen that
I\ = 1, provided r < V%, that is, KAt/Ax> < Vs

which is the stability condition for the difference equation (5-39) corresponding
to the diffusion equation (5-38).

When the boundary values are not zero or conditions are imposed on the
derivatives at the boundaries, the procedure is the same, however the column
vectors and the matrix must be augmented. A very important feature of this
method is that boundary conditions can be included in the analysis. Similarly,
if more than two time levels are involved or when there is a system of equations
to be solved, the matrix must be augmented accordingly. Some examples will
be given later in connection with the von Neumann method of stability analysis.
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5-5-2 Von Neumann Method

The von Neumann method is less general than the matrix method just described
because the boundary conditions cannot be included, but it is much simpler to
apply. It consists of replacing the spatial variation by a single Fourier compo-
nent. This is sufficient for linear equations with constant coefficients since
separate solutions are additive. The method will be illustrated on the leapfrog
scheme applied to the advection equation (5-6), which must be placed in the
form (5-37). However, since there are three time levels in (5-12), it is conve-
nient to introduce a new variable, G,,, = F,, ,_,. Then (5-12) may be written
in the system

cAt
Fm,n+1 Gmn - _A—; (Fm+1,n Fm—-l,n)
Gm,n+1 = Fm n (5-53)
Next, let
F = B piwmAx G = B®@ pinmAx

Substituting these forms into (5-53) and canceling the common exponential
factor leads to a pair of equations that can be put in vector form as follows:

B, | 2o 1 BY o
B® T 0 B® (5-542)
n+1 n ]

2

B,,, =AB, =AB_,...... A"MBy = D N b, (5-54b)

n+1 n n
k=1

or

where the \, are the eigenvalues of the 2 X 2 matrix A; o is defined by (5-15)
and the b, are constants. The eigenvalues are found by solving the equation

—2ic -\ 1
=0
1 —A
or
AN+ 2N —1=0 (5-55)

The coefficients of this equation are identical to those in (5-14), hence the pair
of eigenvalues is given by (5-16). As described earlier, a necessary condition
for computational stability is that |[\| = 1 for all eigenvalues. Moreover, from
the previous analysis of the roots of (5-55), that is, the right side of (5-16), it
is clear that the difference scheme is stable if |o| < 1, as given by (5-31); and
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the guarantee of stability for all admissible wavelengths is cAt/Ax =< 1, as
given by (5-32). In fact

N =1 k=12 (5-56)

thus both modes corresponding to the N’s are neutral. Note that if the expo-
nential factor is retained when passing from (5-53) to (5-54) the result is similar
in form to (5-54) except that the vector B is replaced by a vector consisting of
components F and G.

The more general criterion for stability given by (5-49), which fulfills the
requirements of Definition I-—that the solutions of the difference equation re-
main uniformly bounded functions of the initial state for a finite time T and for
sufficiently small Az and NAt = T, will nevertheless, permit exponential
growth. To show this, assume

AN=1+ aAt (5-57)

where g is a constant. Then

’ N
)\N=(1+aAt)N=<1+C;—VZ> NAt =T

_ al\  NW -1 (aT\*
craw ()N ()

As N increases indefinitely with decreasing Az, the series approaches

2

MW=1+al + (a?
Thus, as seen from the various expressions for the solution, (5-20), (5-42),
(5-46), or (5-54), those modes associated with eigenvalues of the form (5-57)
will display exponential growth. However, within a finite time interval T, the
solutions to the difference equation are bounded as N — o; and thus the dif-
ference scheme is computationally stable in accordance with Definition I.

Even though the differential system may not call for growth, a small
amount of growth with a convergent scheme may be practically acceptable,
particularly if the scheme has other desirable features, for example, damping
of a computational mode. In situations when exponential growth is in accord-
ance with the physics, such as baroclinic or barotropic instability, (5-57) is
certainly appropriate.

To pursue this discussion regarding the eigenvalues somewhat further,
assume that

A =1+ f(Ar) (5-58)

where f is an arbitrary function of Ar. Now take the log of (5-58), expand the
log in a series and multiply by N giving _
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Nen N = N o[l + f(AD] = N[fAD + ... ]

Now revert to the exponential form after dropping terms of higher order

WY = N
Next consider some examples. First assume f(Af) = aA#*, then

)\N — eaNAt2 — eaTAt
If N— o and Ar — 0, then A — 1 and no amplification takes place in the
limit, although for a finite As some growth will occur for @ > 0. On the other
hand, if f(A?) = aAt”, then
)\N — eaNAtI/z — eaT/AtV2
In this case as N — o and At — 0, A" is unbounded and fails the stability
requirement of Definition I.

The von Neumann condition (5-49) on the eigenvalues is certainly neces-
sary for stability of the difference system, but may not be sufficient if the
eigenvectors do not form a complete set. Sufficient conditions for a complete
set, and thus for stability are somewhat more involved and may be found in
standard texts on matrix theory or numerical solutions for partial differential
equations, such as Richtmyer and Morton (1967).

5-5-3 The Energy Method

The last method of stability analysis to be mentioned here is the so-called energy
method, which may or may not have anything to do with physical forms of
energy. This method provides a sufficient condition for stability and is also
applicable to nonlinear equations. If the true solution is known to be bounded,
then the finite difference solution should be examined for boundedness. If it can
be determined that the sum X (um’n)z, over all gridpoints for any time 7, is
bounded, then every u,, , is also bounded and stability is established. This
method is usually considerably more difficult to apply than the von Neumann
method, but it sometimes is usable on systems where the von Neumann method
is inapplicable. In this text, except for a simple example, we confine the dis-
cussion henceforth to the von Neumann method, which is applicable to a wide
variety of linear problems and serves as a useful guide to nonlinear problems.

5-6 EXAMPLES OF THE VON
NEUMANN METHOD

In this section further examples of stability analysis will be given including
iterative schemes, two space dimensions, multiple equations, etc.
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5-6-1 FEuler Scheme

First consider the two-level forward difference scheme called the Euler scheme,
which was used to determine the computational boundary condition (5-22) for
the leapfrog scheme,

F. . ——F

Fm,n+1 = Ly 2Ax m+ln Fm—l,n) (5_59)

It is readily shown that the truncation error is of order, O(A#) + O(Ax?) (student

exercise). Assuming a solution of the form
F — BnAt ei;xmAx (5_60)

m.,n

and substituting into (5-59) gives
B¥=1-—o0i=(1+c)"e™

where o is given by (5-15) and 6 = arctan o. After utilizing the initial condition,
(5-60) becomes

é AL 2 nz
F,,=A [1 -+ <———> sin? prJ giHmAx=nblu)
: Ax

It is immediately apparent that the Euler scheme gives exponential growth for
almost all wavelengths.” Consequently, it is of little consolation to note that no
computational mode in time appears, the reason being that the difference equa-
tion is first order in time as is the differential equation.

In order to facilitate other stability analyses, it is convenient to note that
for a solution of the form (5-60), the centered difference may be expressed in

the form

F

m+1,n

— F,_., = (isin pAx) F,, (5-61)

5-6-2 Uncentered Differencing,
Von Neumann Method

As a slight variation from the Euler scheme, assume the forward time difference
but a backward space difference to approximate the advection equation, that is,

Frnir = Fpp — (cAt/AX) (F,,, — F,_, ) (5-62)

With ¢ > 0, the space derivative may be described as ‘‘upstream,”” and for ¢
< 0, ““downstream,’” especially when ¢ = U is the mean wind velocity. As-
suming the usual solution form, (5-13) gives

Strictly speaking if one were able to fix w, then the scheme would be stable and convergent;
however, in practice this is not feasible for reasons of round-off error alone, which can introduce
arbitrarily large wave numbers.
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F

mn+1

=[1 -0~ e™MHF,, o= cAt/Ax
The eigenvalue for this single element matrix is just the element
AN=1— 0 + ocos puAx — oi sin pAx
and .
IN? = (1 = 0 + o cos pAx)® + o sin® pAx
=1 — 20(1 — cos wAx)(1 — o), a parabola in o
Note that when: og=0o0rc=1,]A =1 neutral

oc<Ooro>1,

A > 1 amplified
0<o <1, IN <1 damped

Thus with upstream differencing, ¢ > 0, damped or neutral solutions are the
norm, provided 0 =< cAz/Ax < 1. On the other hand, with downstream differ-
encing (¢ < 0), o < 0, and the solutions are amplified (computationally un-
stable). (For stability with ¢ < 0, the space differencing would involve points
mand m + 1.)

If F is taken as temperature and ¢, the wind velocity, it would be natural
to look upstream when forecasting temperature changes by advection, rather
than downstream. The numerical solution bears this out, although there is er-
roneous damping (Figure 5-3b). Upstream differencing is sometimes used for
moisture advection, despite the damping, because negative values of moisture
will not be produced, as may happen with central differencing (Figure 5-3).

Energy Method. The upstream case is a particularly easy one to-illustrate the
energy method which is also applicable to nonlinear equations. For this purpose
F is assumed to be cyclic so that F_, , = F,, , and x = mAx, m = 0,1,
.. . M. The solution is assumed to be bounded initially and it will be shown
that the following relationship holds (with the proper restriction on o):

D P =D (5-63)

This condition will ensure that the sum of the squares of 7, , does not increase
with n. Moreover, it is evident that the individual F,,, must be also bounded
if the sum of the squares of all F,,, is bounded. Thus (5-63) is a sufficient
condition for computational stability.

First square both sides of (5-62), collect terms and then sum over m giving

2P =20 — o)F%,

m

+20(l —0)F, F,_,, + d’F2

m'—l,n]

(5-64)
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Two relationships will be derived for use in (5-64). The first follows directly
from the cyclic continuity:

M M
2 _ E 2
2 Fm—l,n - Fm,n
m=0 m=0

The second relationship derives from the foregoing result and the simple fact
that the square of a real quantity is positive as follows:

Y =F., —2F, F + F2 =0

(F - F munt m—1,n m—1,n

m,n m-—1,n
a b c

Transposing the middle term (b) summing, then combining the first and last
sums (a and c) gives

E Frzn,n = 2 Fm,nFm—l,n

Now return to (5-64) and make use of these two relationships successively to
give

m,n+1

E F? =2 {1 - o)* + % F,ZM + 20l — o) F,, Fm_' 1’;"}

= ; [(1 —0)* + o + 20(1 — 0)] F%, = ; F2, (5'_65)

The substitution leading to the inequality is, of course, valid only if the coef-
ficient 20(1 — o) is positive. The latter follows if 0 < o = 1, which is precisely
the condition for computational stability of upstream differencing derived earlier
in this section. The last equality holds because the coefficient of F7, , is exactly
1. Thus (5-63) has been established. The proof of (5-63) is considerably more
complicated for most differencing schemes.

5-6-3 Trapezoidal Implicit Scheme

Both the forward and central time differencing schemes discussed previously
have problems associated with them in addition to truncation error, the Euler
scheme being unstable and the leapfrog, though conditionally stable, having a
computational mode. The next technique, a trapezoidal scheme, avoids the two
foregoing problems but, as will be seen, has another complication. This pro-
cedure uses only two time levels and thus avoids the computational mode, while
using central differences for the space derivative centered at [n + (1/2)]At by
averaging values at n and n + 1 as follows

F

- F c(F - F F - F
mn+1 mn . __ m+1l,n+1 m—1,n+1 + m+1i,n m—1,n 5-66
At 2 < 2Ax 2Ax (5-66)
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Using (5-61) on the central differences easily leads to

7 (1 — i(cAt/2Ax) sin pAx
mrtl T\ 1 + i(cAt/2Ax) sin wAx

> Fm,n = A’ Fm,n

The eigenvalue N is again just the coefficient of F,, ,, the amplification matrix.
Since the magnitude of the ratio of two complex numbers is just the ratio of
their magnitudes, it follows immediately that

I\| = 1, unconditionally stable for all Ax and At

By expanding in series about the time n + %2, it may be shown that the implicit
scheme has a truncation error of second order in ¢ and x [i.e., O(A#)? + O(Ax)?].

The complication referred to earlier is that (5-66) no longer provides a
simple marching process. Suppose the calculations have been completed for all
gridpoints m at time » and it is desired to proceed to time n + 1. Then (5-66)
may be solved for F,, ., but the quantity, F, ., . ,, which is not yet known,
appears on the right side. This means that a system of simultaneous equations
for the F’s must be solved, rather than simply progressing one at a time as in
the leapfrog scheme (5-12). The latter is referred to as an explicit scheme and

(5-66), an implicit scheme. The number of simultaneous equations will essen-

tially equal the number of gridpoints, perhaps many thousands, and this involves
inverting, in one form or another, a large matrix, which is very time consuming
even with a high-speed computer. Consequently, implicit methods have been
little used in meteorology; however some semiimplicit techniques are feasible.
The equation following (5-66) may be written
F = \NF = .. = )\nFO EA)\neip.mAx

mn mn—1

— Aeip,(mAx ~2n6/w)

where

0 = arctan [(cA#/2Ax) sin wAx]
It is readily seen that
cp = 20/Atw

Now when L = 2Ax, pAx = wand 8 = 0; hence ¢, = 0. For large L, wAx
<< 1 and sin pAx= pAx. Thus 8 = arctan(cpA#/2). Continuing, for small
cpAt/2, 8 = cuAt/2 and ¢, = c; whereas for large cpA2/2, 0 = 7/2; and ¢,
= m/Atp., which does not depend on ¢. It may be inferred that for large A,
which will not create instability with this scheme, ¢, will be in serious error.
Thus the implicit scheme, although unconditionally stable, has serious errors
in the phase velocity not only for short waves as in the leapfrog scheme, but
also for relatively large cA#/Ax. The implications will be discussed later in




