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1 Derivation of 1d diffusion equation
Consider a 1d pipe with a fluid at rest containing some contaminant with concentration C(x, t).
Consider the tracer budget for the short element of the pipe from x−dx to x+dx. The equation is

∂

∂t
(total tracer) = flux in−flux out

In the presence of diffusion, “Fick’s law” tells us that the diffusive flux is proportional to the
concentration gradient and flows from high concentration to low concentration. The incoming flux
into the short segment of the pipe we are considering is therefore proportional to the gradient of
the concentration at the left point, −D∂C

∂x |x−dx, and the out flux is similarly evaluated at the right
point, D∂C

∂x |x+dx (note the signs, can you justify them?). D is the diffusion coefficient. The above
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equation becomes

∂

∂t
(2dxC(x, t)) = D

(
∂C
∂x

∣∣∣∣
x+dx
− ∂C

∂x

∣∣∣∣
x−dx

)
≈ D

∂2C
∂x2

∣∣∣∣
x

2dx

where we have used the definition of a second derivative as the difference between the two first
derivatives etc. The diffusion equation for C now becomes

∂

∂t
C(x, t) = D

∂2C
∂x2 .

2 Derivation of 1d advection-diffusion equation
Consider a 1d pipe with a fluid flow with velocity u(x, t) containing some contaminant (tracer) with
concentration C(x, t). Consider the tracer budget for the short element of the pipe from x− dx to
x+dx. The equation is

∂

∂t
(total tracer) = flux in−flux out

Diffusion: In the presence of diffusion, “Fick’s law” tells us that the diffusive flux is propor-
tional to the concentration gradient and flows from high concentration to low concentration. The
incoming flux due to diffusion into the short segment of the pipe we are considering is therefore
proportional to the gradient of the concentration at the left point, −D∂C

∂x |x−dx, and the out flux is
similarly evaluated at the right point, D∂C

∂x |x+dx (note the signs, can you justify them?). D is the
diffusion coefficient.

Advection: the fluid flow also leads to flux into and our of the segment. The flux in is u(x−
dx)C(x−dx, t) and the flux out is u(x+dx)C(x+dx, t).

The above equation now becomes

∂

∂t
(2dxC(x, t)) = D

(
∂C
∂x

∣∣∣∣
x+dx
− ∂C

∂x

∣∣∣∣
x−dx

)
+u(x+dx)C(x+dx, t)−u(x−dx)C(x−dx, t)

≈ D
∂2C
∂x2

∣∣∣∣
x

2dx− ∂

∂x
(uC)2dx

where we have used the definition of a second derivative as the difference between the two first
derivatives etc. The advection-diffusion equation for C now becomes

∂

∂t
C(x, t)+

∂

∂x
(uC) = D

∂2C
∂x2 .

2



3 Scaling
Let U be a typical scale for the velocity, L for the spatial scale, and τ for time. Starting from

∂

∂t
C(x, t)+

∂

∂x
(uC) = D

∂2C
∂x2 ,

the different terms may be crudely estimated as

δC
τ

+U
δC
L

= D
δC
L2 .

If diffusion is dominant and advection negligible, we find that the time it takes a tracer perturbation
to be carried by diffusion to a distance L is given by

τ∼ L2/D.

If advection is dominant, we find,

τ∼ L/U.

Equivalently, note that the distance traveled by the perturbation due to diffusion is proportional to
the square root of time, while in the case of advection it is linear in time.

4 Derivation of 2d diffusion equation
Consider a 2d domain pipe with a fluid at rest containing some contaminant with concentration
C(x,y, t). Consider the tracer budget for the small area element x− dx to x+ dx and y− dy to
y+dy. The budget equation for the small square area element

∂

∂t
(total tracer) = flux in−flux out

The total tracer is simply given by 2dx2dyC(x,y, t).
In the presence of diffusion, “Fick’s law” tells us that the diffusive flux is proportional to the

concentration gradient and flows from high concentration to low concentration. The incoming flux
in the x direction into the small square area element we are considering is therefore proportional
to the gradient of the concentration at the left point times its extent in the y direction, F(x,in)(x−
dx,y) = −2dyD∂C

∂x |x−dx, where D is the diffusion coefficient. The out flux in the x direction is
similarly evaluated at the right edge of the small square, F(x,out)(x+ dx,y) = −2dy ∂C

∂x |x+dx. The
fluxes into and out of the small area element in the y direction are similarly given by F(y,in)(x,y−
dy) =−2dxD∂C

∂y |y−dy and F(y,out)(x,y+dy) =−2dx ∂C
∂y |y+dy
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The above equation therefore becomes

∂

∂t
(2dx2dyC(x,y, t)) = F(x,in)(x−dx,y)−F(x,out)(x+dx,y)

+ F(y,in)(x,y−dy)−F(y,out)(x,y+dy)

= (2dy)D
(

∂C
∂x

∣∣∣∣
x+dx
− ∂C

∂x

∣∣∣∣
x−dx

)
+ (2dx)D

(
∂C
∂y

∣∣∣∣
y+dy
− ∂C

∂y

∣∣∣∣
y−dy

)

≈ D

(
∂2C
∂x2

∣∣∣∣
x,y

+
∂2C
∂y2

∣∣∣∣
x,y

)
2dx2dy

were we have used the definition of a second derivative as the difference between the two first
derivatives etc. Dividing by the area of the small square, the diffusion equation for C now becomes

∂

∂t
C(x,y, t) = D

(
∂2C
∂x2 +

∂2C
∂y2

)
.

This may be written in vector form as

∂

∂t
C = D∇

2C.

which is easily extended to 3d and to other coordinate systems.

5 Numerical solution
Start from the diffusion equation

∂C
∂t

= D
∂2C
∂x2 .

Discretize in space (center difference, location denoted by subscript i) and time (Euler forward,
time denoted by superscript n),

(Cn+1
i −Cn

i )/∆t = D(Cn
i+1−2Cn

i +Cn
i−1)/(∆x)2,

so that we can solve for Cn+1
i in terms of the concentration at n.
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