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1 Equation

Diffusion equation on the surface of a sphere,
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for a temperature which is a function of co-latitude and time only, u = u(θ, t),
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Defining x = cos θ we have (see notes in power method chapter)

dx = sin θdθ,
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so that, defining D = D̂/r2,
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2 Homogeneous case

Letting u = T (t)X(x), we have
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X
= −κ2

so that,

T ′ = −Dκ2T
((1 − x2)X ′)′ + κ2X = 0.

Solution which is bounded for x = ±1 is κ2 = n(n+ 1), for n = 0, 1, 2, . . . and

T (t) = Ae−Dκ
2t

X(x) = CPn(x)

where Pn(x) are Legendre polynomials. So general solution which satisfies the boundary
conditions is

u(x, t) =
∞∑
n=0

CnPn(x)e−Dn(n+1)t

impose initial conditions,

u(x, t = 0) = f(x) =
∞∑
n=0

CnPn(x).

To calculate Cn, multiply both sides by Pm(x) and integrate over x, using the orthogonality
condition for Legendre polynomials, (weight function is 1, see Greenberg p 910, section 17.8),∫ 1

−1
Pn(x)Pm(x)dx = δmn
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,

to find,

Cm =
2m+ 1

2

∫ 1

−1
f(x)Pm(x)dx,

which concludes the solution, see demo Matlab program diffusion 1d sphere SL.m.

3 Nonhomogeneous case

Consider temperature as function of latitude, u(x), forced by solar radiation as function of
latitude, S(x),
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Expand the forcing in Legendre polynomials,

S(x) =
∞∑
n=0

SnPn(x).

where

Sn =

∫ 1

−1 S(x)Pn(x)dx∫ 1

−1 Pn(x)Pn(x)dx
=

2n+ 1

2

∫ 1

−1
S(x)Pn(x)dx,

and divide the solution into particular solution which is time independent (steady state),
and time dependent,

u(x, t) = u(x) + û(x, t).

Steady part satisfies,

0 = D
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+ S(x).

so that expanding

u(x) =
∞∑
n=0

UnPn(x)

and substituting this and the expansions for S(x) into the steady equation using also,
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+ n(n+ 1)Pn(x) = 0,

we find

0 = −D
∞∑
n=0

Unn(n+ 1)Pn(x) + SnPn(x),

from which we find the coefficients for the steady state part,

Un =
Sn

Dn(n+ 1)
.

Note that S0 = 0 (so that U0 = 0 as well), for a steady state to exist (it can only exist if
the net forcing vanishes, and S0 is proportional to the spatial mean of the forcing, because
P0(x) = constant).

The remaining, time dependent, part of the solution satisfies

dû
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= D
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)
.

with initial conditions,

û(x, t = 0) = u(x, t = 0) − u(x),

which is a homogeneous problem equivalent to that we already solved in the previous section.
Note that for a steady solution to exist, consistency conditions on the integral of S(x)

must be satisfied, something like vanishing integral over x.
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