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1 Equation
Diffusion equation on the surface of a sphere,
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for a temperature which is a function of co-latitude and time only, u = u(6,1),
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Defining = = cos § we have (see notes in power method chapter)
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so that, defining D = 15/72,
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2 Homogeneous case

Letting u = T'(t) X (x), we have
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so that,
T' = —Dr’T

(1-2H)X") + KX =0.
Solution which is bounded for z = +1 is k> = n(n + 1), for n =0,1,2,... and

T(t) = Ae P
X(z) =CP,(x)

where P,(x) are Legendre polynomials. So general solution which satisfies the boundary
conditions is

u(z,t) = Z C,, Py (z)e~ Printt
n=0
impose initial conditions,
u(a,t =0) = f(z) =Y _ CpPu().
n=0

To calculate C,,, multiply both sides by P,,(x) and integrate over z, using the orthogonality
condition for Legendre polynomials, (weight function is 1, see Greenberg p 910, section 17.8),
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to find,

Cpm =

[ P,

which concludes the solution, see demo Matlab program diffusion 1d_sphere SL.m.

3 Nonhomogeneous case

Consider temperature as function of latitude, u(x), forced by solar radiation as function of
latitude, S(x),
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Expand the forcing in Legendre polynomials,

S(z) =Y S,Pu().

where
_ [, S(x) Py(z)da _
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and divide the solution into particular solution which is time independent (steady state),
and time dependent,
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u(z,t) =u(z) + uz,t).
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Steady part satisfies,

so that expanding

and substituting this and the expansions for S(z) into the steady equation using also,
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we find

0=-DY U.n(n+1)Py(z)+ S, Pulz),
n=0

from which we find the coefficients for the steady state part,
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Note that Sy = 0 (so that Uy = 0 as well), for a steady state to exist (it can only exist if
the net forcing vanishes, and Sy is proportional to the spatial mean of the forcing, because
Py(z) = constant).
The remaining, time dependent, part of the solution satisfies

di _d . dil

w(z,t =0) =u(x,t =0) —u(x),

with initial conditions,

which is a homogeneous problem equivalent to that we already solved in the previous section.
Note that for a steady solution to exist, consistency conditions on the integral of S(z)
must be satisfied, something like vanishing integral over .
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