Topics:

1. Intermittency

 (a) Type I
 i. Saddle-node (tangent) bifurcation
 ii. \(x_{n+1} = \varepsilon + x_n + x_n^2 \)
 iii. A real eigenvalue crosses the unit circle at +1.
 iv. Laminar signal increases monotonically to chaos.
 v. \(\tilde{T}(\varepsilon) \sim \varepsilon^{\frac{1}{2}} \)

 (b) Type II
 i. Hopf bifurcation
 ii. \[
 r_{n+1} = (1 + \varepsilon)r_n + r_n^3
 \]
 \[
 \theta_{n+1} = \theta_n + 1
 \]
 iii. Two complex conjugate eigenvalues cross the unit circle simultaneously.
 iv. Laminar signal spirals toward chaos.
 v. \(\tilde{T}(\varepsilon) \sim \varepsilon^{-1} \)

 (c) Type III
 i. Inverse period doubling bifurcation
 ii. \(x_{n+1} = -(1 + \varepsilon)x_n - x_n^3 \)
 iii. A real eigenvalue crosses the unit circle at -1.
 iv. Laminar signal alternates as it approaches chaos.
 v. \(\tilde{T}(\varepsilon) \sim \varepsilon^{-1} \)
 vi. The probability distribution, \(P(l) \), for finding a certain length of laminar behavior is different from that for Type II intermittency.