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Problem Set 12 Solutions

1. The time series is plotted for @ instead of 0 itself because © may become very large if the
pendulum winds around the top and it may be hard to understand the system’s behavior.

(a) For k=0.5 we see similar behavior to the transition to chaos in the circle map. We
can enter and leave mode-locked regions (Arnold tongues) and have quasi-periodic
behavior between them. After the onset of chaos we can still get mode-locked regions.
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Figure 2: =0.5, a quasi-periodic solution. The bagel in phase space and circle in the Poincare
section signify this.
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Figure 3: f=1.25, we enter another mode-locked solution. Interestingly, from here we follow a
period-doubling route to chaos.
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Figure 4: f=1.3, the period has doubled.
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Figure 6: f=1.4, chaos! If we keep increasing f we will reach a phase-locked solution near {=1.9
that will go through another period-doubling cascade back to chaos.



(b) When k=0, we don’t find any quasi-periodic behavior. So we might consider this a
degenerate case of the quasi-periodic route to chaos. The quasi-periodicity is lost due
to the symmetry gained by setting k=0.
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Figure 8: At larger forcing (f=0.5) we get mode-locked behavior.
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Figure 9: Then the system becomes chaotic (f=1).
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Figure 10: You can find mode-locked periodic behavior after the onset of chaos (f=1.1 here).



(c) I was able to get a very rough picture of what was going on using this method. A
major annoyance is that the behavior seems to depend pretty strongly on the time-
stepping. When I decreased the time-stepping by a factor of 10 the behavior changed
dramatically. To give you an idea of how complex an actual state plot of a system like
this is, here’s one from (D’Humieres ef al., 1982) for k=0.
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FIG. 3. State diagram for the driven pendulum with
Q=4 and y,=0.

Figure 11: The x-axis is the frequency of the driving and the y-axis is the coefficient of the periodic
forcing.

2. In general when the map of an experimental system that is similar to the circle map becomes
non-invertible, chaos occurs.

Circle Map, K=0.75, Q=0.4

Figure 12: For K<1 0, is a single-valued function of 0, and vice versa, so the circle map is
invertible for K<1.



Circle Map, K=1.25, Q=0.4
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Figure 13: For K>1 0, is a single-valued function of 6,,, but 0, is not a single-valued function
of 0,.11. so the circle map is not invertible for K>1. I had to use 30 random starting points the get
a decent picture of the function here.



3. The nth iteration of the Koch curve has 4" intervals of length (%)" So the box dimension is:
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4. The nth iteration has 3%" 2D boxes each with side length £ = (%)" 4" are filled. The box

dimension is:

The same as the Koch curve!
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5. We have a 3D cube, such that divide into 27, we obtain 27 = 33 cubes. After one iteration,
we removed 2 -3 + 1 cubes (2 -3 faces and 1 center). We are left with [3% — (2-3 4 1)] cubes.
After 2 iterations [3% — (2-3 + 1)]2... After n iterations, [3° — (2-3 + 1)]" each with side
length € = (%)” The box dimension is:
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6. Now imagine we have an N-dimensional cube and we keep the only the corners at each
fractal iteration. We still have € = (%)" for the nth iteration. So the box dimension is:
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7. There are 4°" 2D boxes at the nth iteration, so € = (}t)" 8" of these boxes are filled. So the
box dimension is:
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