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Problem Set 12 Solutions

1. The time series is plotted for θ̇ instead of θ itself because θ may become very large if the
pendulum winds around the top and it may be hard to understand the system’s behavior.

(a) For k=0.5 we see similar behavior to the transition to chaos in the circle map. We
can enter and leave mode-locked regions (Arnold tongues) and have quasi-periodic
behavior between them. After the onset of chaos we can still get mode-locked regions.
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Figure 1: f=0.1, a mode-locked solution (periodic).
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Figure 2: f=0.5, a quasi-periodic solution. The bagel in phase space and circle in the Poincare
section signify this.
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Figure 3: f=1.25, we enter another mode-locked solution. Interestingly, from here we follow a
period-doubling route to chaos.
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Figure 4: f=1.3, the period has doubled.
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Figure 5: f=1.31, the period has doubled again.
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Figure 6: f=1.4, chaos! If we keep increasing f we will reach a phase-locked solution near f=1.9
that will go through another period-doubling cascade back to chaos.
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(b) When k=0, we don’t find any quasi-periodic behavior. So we might consider this a
degenerate case of the quasi-periodic route to chaos. The quasi-periodicity is lost due
to the symmetry gained by setting k=0.
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Figure 7: For small forcing (f=0) the system is damped.
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Figure 8: At larger forcing (f=0.5) we get mode-locked behavior.
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Figure 9: Then the system becomes chaotic (f=1).
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Figure 10: You can find mode-locked periodic behavior after the onset of chaos (f=1.1 here).
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(c) I was able to get a very rough picture of what was going on using this method. A
major annoyance is that the behavior seems to depend pretty strongly on the time-
stepping. When I decreased the time-stepping by a factor of 10 the behavior changed
dramatically. To give you an idea of how complex an actual state plot of a system like
this is, here’s one from (D’Humieres et al., 1982) for k=0.

Figure 11: The x-axis is the frequency of the driving and the y-axis is the coefficient of the periodic
forcing.

2. In general when the map of an experimental system that is similar to the circle map becomes
non-invertible, chaos occurs.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Circle Map, K=0.75, Ω=0.4

theta
n

th
et

a n+
1

Figure 12: For K<1 θn+1 is a single-valued function of θn and vice versa, so the circle map is
invertible for K<1.
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Figure 13: For K>1 θn+1 is a single-valued function of θn, but θn is not a single-valued function
of θn+1. so the circle map is not invertible for K>1. I had to use 30 random starting points the get
a decent picture of the function here.
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3. The nth iteration of the Koch curve has 4n intervals of length (1
3)n. So the box dimension is:

Dbox = lim
ε→∞

ln(N(ε))
ln(1

ε )

= lim
n→∞

ln(4n)

ln(3n)

=
ln(4)

ln(3)

≈ 1.26 (1)

4. The nth iteration has 32n 2D boxes each with side length ε = ( 1
3)n. 4n are filled. The box

dimension is:

Dbox = lim
ε→∞

ln(N(ε))
ln(1

ε )

= lim
n→∞

ln(4n)

ln(3n)

=
ln(4)

ln(3)

≈ 1.26 (2)

The same as the Koch curve!

5. We have a 3D cube, such that divide into 27, we obtain 27 = 33 cubes. After one iteration,
we removed 2 ·3+1 cubes (2 ·3 faces and 1 center). We are left with [33

− (2 ·3+1)] cubes.
After 2 iterations [33

− (2 · 3 + 1)]2. . . After n iterations, [33
− (2 · 3 + 1)]n each with side

length ε = (1
3)n. The box dimension is:

Dbox = lim
ε→∞

ln(N(ε))
ln(1

ε )

= lim
n→∞

ln[33
− (2 ·3+1)]n

ln(3n)

=
ln(20)

ln(3)

≈ 2.73 (3)

6. Now imagine we have an N-dimensional cube and we keep the only the corners at each
fractal iteration. We still have ε = ( 1

3)n for the nth iteration. So the box dimension is:

Dbox = lim
ε→∞

ln(N(ε))
ln(1

ε )

= lim
n→∞

ln[3N
− (2 ·N +1)]n

ln(3n)

= lim
n→∞

ln[3N
− (2 ·N +1)]

ln(3)
(4)
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7. There are 42n 2D boxes at the nth iteration, so ε = ( 1
4)n. 8n of these boxes are filled. So the

box dimension is:

Dbox = lim
ε→∞

ln(N(ε))
ln(1

ε )

= lim
n→∞

ln(8n)

ln(4n)

=
ln(8)

ln(4)

=
3
2

(5)
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