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Problem Set 9 Solutions

1. I played with a simple MATLAB script to try to determine where the period doubling bifur-
cations occurred manually. This is not a particularly accurate way of doing this because near
bifurcation points convergence is slow and round-off errors are a big problem. Because of
these issues, this is not the way people actually try to determine 8. The eigenvalue method
from Feigenbaum, involving taking advantage of super-stable cycles, is usually still used.
See feigenbaum.m on the website for an example.

For the sine map, I found r; ~ 0.713, r, ~ 0.831, r3 2 0.858 so d ~ % ~4.4. We
know this is a quadratic map, and this estimate is relatively close to the value & = 4.669.. ..

For the quartic map given, I found r| =~ 0.746, r, =~ 1.113, r3 = 1.161 so d = % R~

7.6. (Briggs, 1990) give § = 7.28.... for quartic maps, so again the estimate is not too bad.

2. This problem uses Schuster’s notation, in which . is a positive number. In Strogatz O is a
negative number. This is why equation 3.22 in Schuster looks slightly different from equation
(2) in section 10.7 of Strogatz.

(a) Assume g(x) is a fixed point of the doubling transformation, so:
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So ,ug(ﬁ) is also a fixed point of the doubling transformation.

(b) By definition, g(x)=—0ig?*(=%). So we must have g(—ow) = —og?(x) for any x. If x*
is a fixed point of g(x), then g?(x*) = x* so g(—ox*) = —ox* and —ow* is also a fixed
point of g(x).

This means that if g(x) has a single fixed point, then it must have an infinite number of
them.

g(0)=1 and g(1)=—é<1 so assuming g is well-behaved it must have one fixed point
between x=0 and 1. This means it must have an infinite number of fixed points and so
crossings of the line y=x.

We expect the g to be an even function of x. So we also expect an infinite number of
crossings of the line y=-x.



(c) Approximate g(x)=1+czx2. So we have:
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To satisfy this equation at for all x up to O(x), we need:
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This leads to a quadratic in o (or ¢»). If we take the positive root we get o0 = 1+ /3 ~
2.73 so ¢» =~ —1.37. Not to shabby for so little work!

. Following from Schuster, page 46:
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. This is directly out of Strogatz. If you have a question about it please see me. Mathematica
helps with the algebra.

. In the quartic case we expect g1 (x) =1+ Y7, cix™®. If we keep only the first term, we find:
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Which gives two equations:
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These yield a quartic equation for o: o* — 4o —4 = 0. Using ’fzero’ in MATLAB I find
the solution to be o ~ 1.835. (Briggs, 1990) gives oo = 1.690... for the quartic case, so this
method gets us within 10%.

6. From section notes 8. I'll explain the plots as I did in section.

For certain values of r the Lorenz system exhibits “windows of periodic behavior.”

For

the standard choices of b=§ and 6=10, a “period doubling cascade” to chaos occurs as r
decreases for r just below 100.
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Figure 1: For r=100 we have a limit cycle. Notice that if we were randomly trying r values and
happened to try r=100 (which might be a common choice) we would see periodic behavior in the

middle of chaos.
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Figure 2: A period doubling bifurcation has occurred. Notice that this cycle is very close to two
limit cycles for r=100. In fact, I wouldn’t be able to tell the difference except from the time series
plots, only from the plots in phase space.
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Figure 3: Here the behavior is chaotic, but for some time it almost behaves like the limit cycle for
r=100. So if we start at r=90 or so and increase r toward r=100 we would see what looks like a
limit cycle start to materialize from chaos.
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Figure 4: Even at r=95 there is structure that looks like the r=100 limit cycle near t=50.
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Figure 5: Here I've zoomed in on one region of phase space to show 3 period doublings. It is very
hard to see the period doublings from a time series or a larger region in phase space. Notice that
the doublings start happening very close together as r decreases.



