Homework #5 Nonlinear dynamics and chaos

1. A bead of mass *m* sliding on a rotating circulation loop of radius *R* is described by

$$\ddot{\theta} + 2\mu\dot{\theta} + (g/R)\sin\theta - \omega^2\sin\theta\cos\theta = 0$$

Here, θ describes the angular position of the bead on the hoop, g is acceleration due to gravity, μ is a measure of the friction experienced by the bead, and ω is the angular velocity of the hoop.

- (a) for $\mu = 0$, determine the fixed points (equilibrium positions) of the system, and sketch the two dimensional phase portrait in each of the following cases: (i) $\omega < g/R$; (ii) $\omega^2 = g/R$; (iii) $\omega^2 > g/R$. You may want to use a modified version of the Matlab program my_quiver.m from the course home page.
- (b) for $\mu > 0$, choose ω as a control parameter, and examine the different bifurcations of fixed points that occur as ω is increased from zero. Construct an appropriate bifurcation diagram.
- 2. Reversible system on a cylinder: Do problem 6.6.8 from Strogatz, page 191.
- 3. Find fixed points, draw vector field around them, and calculate their index for the system:

$$\dot{x} = xy;$$
 $\dot{y} = x + y$

- 4. Do the following systems have a limit cycle solution?
 - (a) (Construct a Lyapunov function...):

$$\dot{x} = y - x^3; \qquad \dot{y} = -x - y^3$$

(b) Consider the system:

$$\dot{x} = f(x,y)$$

 $\dot{y} = g(x,y)$

Defining $\mathbf{x} \equiv (x, y)$, this system can be written $\dot{\mathbf{x}} = (f(x, y), g(x, y))$. If for some V we can write $\dot{\mathbf{x}} = -\nabla V$, then this is called a gradient system. Show that $\partial f / \partial y - \partial g / \partial x = 0$ if and only if this is a gradient system. Using the above, does the following system have a limit cycle solution:

$$\dot{x} = y + 2xy;$$
 $\dot{y} = x + x^2 - y^2$