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Problem Set 5 Solutions

1. (a) We consider � π � θ � π. The pendulum pointing down corresponds to θ=0 and the
pendulum pointing up corresponds to θ ��� π. Define ν � θ̇. The system can be
rewritten:

θ̇ � ν (1)

ν̇ � sin � θ �	� ω2cos � θ � � g
R



(2)

Notice that this system is reversible. The fixed points of this system are at ν=0 and
θ � 0 ��� π �
� arcos � g

Rω2 � . Calculate the Jacobian:

J � �
0 1

ω2 � cos2 � θ � � sin2 � θ ��� � g
Rcos � θ � 0 �

The trace and determinant of the Jacobian are:

τ � 0 (3)

∆ � g
R

cos � θ ��� ω2 � sin2 � θ � � cos2 � θ ��� (4)

Evaluate ∆ at the fixed points:

∆ ��� 0 � 0 � � ω2 � g
Rω2

� 1 � (5)

∆ ����� π � 0 � � � ω2 � g
Rω2 � 1 � (6)

∆ � ��� arcos � g
Rω2 ��� 0 � � ω2 � 1 � � g

Rω2 � 2 � (7)

i. g
Rω2 < 1
The f.p. at (0,0) is a saddle. The f.p. at ( � π,0) is a saddle. The f.p. at ( � arcos � g

Rω2 � ,0)
are nonlinear centers.

ii. g
Rω2 = 1
The f.p. at ( � π,0) is a saddle. There is another f.p. at (0,0) which is a center (from
plotting).

iii. g
Rω2 > 1
The f.p. at (0,0) is a center. The f.p. at ( � π,0) is a saddle. The f.p. at ( � arcos � g

Rω2 � ,0)
don’t exist.

(b) If we include friction our equations can be written:

θ̇ � ν (8)

ν̇ � sin � θ �	� ω2cos � θ � � g
R

 � 2µν (9)
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The system is no longer reversible, so we don’t expect to get centers. We get the same
fixed points as before. The Jacobian is:

J � �
0 1

ω2 � cos2 � θ � � sin2 � θ ��� � g
Rcos � θ � � 2µ �

The trace and determinant of the Jacobian are:

τ � � 2µ (10)

∆ � g
R

cos � θ ��� ω2 � sin2 � θ � � cos2 � θ ��� (11)

Now let’s consider our cases again:

(a) g
Rω2 < 1

The f.p. at (0,0) is a saddle. The f.p. at ( � π,0) is a saddle. The f.p. at ( � arcos � g
Rω2 � ,0)

are either stable nodes or stable spirals. Whether τ2 � 4∆ � µ2 � ω2 � g2

R2ω4 is greater
than or less than zero determines whether these points will be nodes or spirals.

(b) g
Rω2 = 1
At this point a supercritical pitchfork bifurcation occurs.

(c) g
Rω2 > 1
The f.p. at ( � π,0) is a saddle. The f.p. at (0,0) is either a stable spiral or a stable node.
Whether τ2 � 4∆ � µ2 � g

R � ω2 is greater than or less than zero determines whether
these points will be nodes or spirals. The f.p. at ( � arcos � g

Rω2 � ,0) don’t exist.
Here is a bifurcation diagram:
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2. First notice that the paper cited was written by Harvard’s very own Professor Howard Stone!

(a) The system is invariant under the transformation t � � t � φ � � φ � x � x, so it is
reversible.

(b) ẋ � 0 at φ � 0 � � π and x=0,1 while φ̇ � 0 at x � 8 ��� 2β
cos � φ � � 1 � .

Now consider the intersection of the nullclines. At φ � � π we can never get a f.p. with
positive β and x. At φ � 0 there will be a f.p. at x=8 � � 2β � 1 � for 1� 2 ! β ! 9

8 � 2
. At

x=0 there will be fixed points at φ �"� arccos � � 2β � for 0
� β � 1� 2

. At x=1 there will

be fixed points at φ �#� arccos � 8 � 2β
9 � for 0

� β � 9
8 � 2

.

So for 1� 2 ! β ! 9
8 � 2

there are three fixed points. The Jacobian of the system is:

J �%$ � 2
4 � 2x � 1 � sin � φ � � 2

4 x � x � 1 � cos � φ �� 1
16 � 2

cos � φ � sin � φ �
2 � 2

� x
8 � 1 � &

The trace and determinant of the Jacobian are:

τ � 17 � 2
32

xsin � φ � (12)

∆ � 1
8
� x
8

� 1 �	� 2x � 1 � sin2 � φ �'� 1
64

x � x � 1 � cos2 � φ � (13)

At (φ,x)=(0,8 � � 2β � 1 � ), we have:

τ � 0 (14)

∆ � � � 2β � 1 �	� � 2β � 9
8
� (15)

So for 1� 2 ! β ! 9
8 � 2

(when this f.p. exists) ∆<0 and it is a saddle.

At � φ � x �
�(�)� arccos � 8 � 2β
9 �*� 1 � , we have:

τ � � 17 � 2
32

sin � φ � (16)

∆ � 9
64

sin2 � φ � (17)

So τ2 � 4∆ � sin2 � φ �	��� 17 � 2
32 � 2 � 9

16 �+� sin2 � φ �
512 . So the f.p. at positive φ is an unstable

node and the f.p. at negative φ is a stable node.
At x=0, ẋ=0 and for our β range φ̇ ,� 0, so a closed orbit winds around the cylinder. For
x near one, the stable node at � φ � x �-�.�)� arccos � 8 � 2β

9 � 1 � is approached at long times.
So there must be a homoclinic orbit that intersects with the saddle point and winds
around the cylinder to separate these two domains.
By the Poincare-Bendixon theorem there must be at least one closed orbit between x=0
and the homoclinic orbit. We expect to have non-isolated closed orbits in reversible
nonlinear systems, so we expect to have an entire band of closed orbits in this region.
Here is a phase portrait:
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(c) Define β � 1� 2
� α. So β � 1� 2

from above corresponds to α � 0. The position of

the saddle is ( 8α� 2
,0), so the saddle moves toward the line x=0 as α � 0, shrinking the

region where the closed orbits exist. At α � 0 (β � 1� 2
), the homoclinic orbit becomes

the circle in phase space at x=0 and the band of closed orbits disappears.

(d) For 0 ! β ! 1� 2
we must consider the fixed points at � φ � x �-�/�0� arccos �1� 2β �*� 0 � .

τ � 0 (18)

∆ � � 1
8

sin2 � φ � (19)

So these points are saddles. Here is phase portrait:

x ’ = (sqrt(2)/4) x (x − 1) sin(phi)                            
phi ’ = (1/2) (beta − cos(phi)/sqrt(2) − x cos(phi)/(8 sqrt(2)))

beta = 0.5
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3. The only fixed point occurs at the origin. Linearization tells us to expect a non-isolated fixed
point, but by plotting the nullclines we can see that this is not the case. From the plot of the
vector field below, we can see that the index around the fixed point at the origin is zero.

x ’ = x y  
y ’ = x + y
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4. (a) The only fixed point is at the origin. We’d like to construct a Liapunov function, V(x),
such that V(x)>0 and dV

dt <0 for all x ,� x 2 . Consider V=x2 � ay2 with a>0. The first
condition is automatically satisfied. Let’s investigate the second:

V̇ � 2xẋ � 2ayẏ (20)� 2x � y � x3 �'� 2ay � � x � y3 � (21)� 2 � 1 � a � xy � 2x4 � 2ay4 (22)
(23)

So the second condition is satisfied if we choose a=1. Our Liapunov function is V=x2 �
y2.
A system that has a Liapunov function cannot have a closed orbit. Assume such a
system did have a closed orbit and consider the point x0 on it. After one circuit the
system would have to return to x0 and we would have ∆V =0 (since V depends only on
position). But we know that ∆V must also be given by ∆V �43 T

0 V̇ dt where T is the
period of the orbit. Since the closed orbit cannot intersect with the origin, this tells us
that ∆V is strictly less than zero - a contradiction!
So there can be no limit cycle for this system.

(b) If we have a gradient system, then f=- ∂V
∂x and g=-∂V

∂y , so as long as V is well-behaved
we know:

∂ f
∂y

� ∂g
∂x

� � ∂2V
∂y∂x

� ∂2V
∂x∂y

� 0 (24)

Now let’s do a proof in the opposite direction. Start with ∂ f
∂y � ∂g

∂x and integrate over x
and y: 5

x

5
y ∂ f

∂y
dy 6 dx 67� 5

x

5
y ∂g

∂x
dy 6 dx 6 (25)5

x
f dx 6 � 5

y
gdy 6 (26)

So if we define V � x � y �8� � 3 x f dx 6 � � 3 y gdy we are guaranteed that f=- ∂V
∂x and g=-∂V

∂y ,
i.e. the system is a gradient system.
∂ f
∂y =1+2x and ∂g

∂x =1+2x so ∂ f
∂y � ∂g

∂x , the system is a gradient system.
Let’s assume we have a limit cycle. If we take one trip around it and return to our start-
ing point, we must have ∆V=0 for the trip (since V must be single-valued). However, if
the cycle has period T, we can also write: ∆V �93 T

0 V̇dt �"3 T
0 � ∇V : ẋ � dt � � 3 T

0 � ẋ � 2dt.
For a cycle to exist, we cannot have ẋ � 0 (or else motion would stop) so we have
shown that ∆V must be strictly less than zero. This is a contradiction, so gradient
systems cannot have limit cycles.
Since this system is a gradient system, it can have no limit cycle.
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