
Applied Mathematics 120:
Applied linear algebra and big data

Course web page: https://canvas.harvard.edu/courses/4766 (Spring 2016)

Last updated: May 19, 2016.
Feel free to write call or visit us with any questions.

1 Administrative

Instructor: Eli Tziperman (eli at seas.harvard.edu);

TFs: Please see course web page,

Day & time: Tue,Thu 10:00-11:30

Location: Jefferson 250

Sections: see course web page for times and places.

1st meeting: Tuesday, Jan 26, 2016

Office hours: Eli: Please see course web page for times; 24 Oxford, museum building, 4th
floor, room 456. TFs: please see course web page.

Textbooks: Page or section numbers from the relevant textbook for any given lecture are
given in the detailed syllabus below. The main textbooks to be used are:

Str Strang, G., Linear Algebra and its Applications, 4th ed., 2005.

MMD J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of Massive Datasets,
download, see also on-line MOOC

Other textbooks used:

Mitch Mitchell, Tom, Machine learning, McGraw-Hill Science/ Engineering/ Math,
1997, 432 pages.

GMW Practical optimization, Gill, Murray and Wright (1981)

Supplementary materials/ Sources directory: Additional materials from several
additional textbooks and other sources, including Matlab programs used in class,
may be found in the Sources directory. Follow links below for the specific source
material for each lecture. In order to access these materials from outside the Harvard
campus (possibly also from the Harvard wireless network), you’ll need to use the
VPN software which can be downloaded from the FAS software download site.
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Please note: Course materials are the property of the instructional staff, Harvard
University, or other copyright holders, and are provided for your personal use. You
may not distribute them or post them on websites without permission of the course
instructor.

Prerequisites: Applied Mathematics 21a and 21b, or equivalent; CS50 or equivalent.

Computer Skills: Programming knowledge (CS50 or equivalent experience) is expected
for this class, Matlab experience would be particularly helpful. Course
demonstrations, sections and homework assignment will be Matlab-based, some of
the homework assignments will involve significant code writing effort. Students will
gain additional experience with Matlab as part of the course.

Students are asked to download and install Matlab on their computers from the FAS
software download site. If you have not been exposed to Matlab or would like a
refresher, we recommend the Matlab boot camp which involves 3-4 lectures and takes
place during the beginning of the term, you need to register in advance at
https://canvas.harvard.edu/courses/1858 and the number of students may be limited.

Sections: Regular times for sections will be scheduled at the beginning of the semester.
Each TF will hold a weekly section and have weekly office hours. During the sections,
the TFs will discuss and expand on the lecture material and solve additional
problems. Although these sections are not mandatory, you are strongly encouraged to
attend. Occasionally the TFs will explain material covered in the reading material
but not in lectures.

Homework: Homework will be assigned every Tuesday, and will be due the following
Tuesday in class unless otherwise noted. The homework assignments are meant to
help you better understand the lecture material and introduce you to come important
extensions. It is essential that you actively engage in problem solving using the
assigned HW and other problems from the course textbooks. Continuously practicing
the lecture material on a weekly basis via such problem solving is the only way to
become comfortable with the subjects covered in the course.

You are encouraged to post any questions, homework related or others, to the on-line
forum on the course web page and contribute answers when relevant.

Collaboration policy: Discussion and the exchange of ideas are essential to doing
academic work, and we strongly encourage you to discuss and work on homework
problems with other students (and with the teaching staff, of course). However, after
discussions with peers, you need to work through the problem yourself and ensure
that any answers you submit for evaluation are the result of your own efforts, reflect
your own understanding and are written in your own words. In the case of
assignments requiring programming, you need to write and use your own code for
solving HW problems, code sharing is not allowed. In addition, you must cite any
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books, articles, websites, lectures, etc that have helped you with your work using
appropriate citation practices.

Quizzes, final, grading: Homework: 40%; three quizzes, tentatively scheduled to

1. Tuesday March 1, 7-9pm, Jefferson 250

2. Tuesday March 29, 7-9pm, Jefferson 250

3. Thursday April 21, 7-9pm, William James Hall B-1, 33 Kirkland St.

(all in the evening): 30% together; final: 30%;

Readings: Reading material from the textbooks or other sources will be assigned
occasionally. This material will complement the lectures, is therefore an important
part of the course, and can be found under the course downloads web page.

Sections notes: please see course web page

This document:
http://www.seas.harvard.edu/climate/eli/Courses/APM120/2016spring/detailed-
syllabus-apm120.pdf
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2 Outline

Topics in linear algebra which arise frequently in applications, including in the analysis of
large data sets: linear equations, eigenvalue problems, principal component analysis,
singular value decomposition, quadratic forms, linear inequalities, linear programming,
optimization, linear differential equations, modeling and prediction, data mining methods
including frequent pattern analysis, classification, clustering, outlier detection. Examples
will be given from physical sciences, biology, climate, commerce, internet, image processing,
economics and more.

Please see here for a presentation with a review of example applications.

3 Syllabus

Follow links to see the source material and Matlab demo programs used for each lecture
under the appropriate section of the course downloads web page.

1. Introduction, overview. sources.
We’ll discuss some logistics, the course requirements, textbooks, overview of the
course, what to expect and what not to expect (presentation).

4

http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/apm120-intro.pptx
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/
http://www.seas.harvard.edu/climate/eli/Courses/APM120/Sources/01-Introduction/apm120-intro.pptx


2. Linear equations. sources.

(a) Notation

(b) Motivation: matrices and linear equations arise in the analysis of electrical
network, chemical reactions, large ones arise in network analysis, Leontief
economic models, ranking of sports teams (Str§2.5 p 133-134; also Str§8.4),
numerical finite difference solution of PDEs, and more.

(c) Reminder: row and column geometric interpretations for linear equations
Ax = b, aijxj = bi (Str§1.2, 2d example on pp 4-5; Matlab demo). Solving
linear equations using Gaussian elimination and back substitution (Str§1.3 pp
13-14). Cost (number of operations, Str, pp 15-16).

(d) Solution of large linear systems via direct vs iterative techniques

i. Direct method: LU factorization (Str§1.5 pp 36-43, Matlab demo; detailed
4× 4 example with partial pivoting (row only) on p 3-4 in notes by Lothar
Reichel).

ii. Iterative methods: Jacobi, Gauss-Seidel, SOR (Str§7.4, pp 405-409; Matlab
example; SOR derivation; convergence is further discussed in notes by
RAPETTI-GABELLINI Francesca, and typically systems based on matrices
that are either diagonally-dominant, or symmetric positive definite, or both,
tend to converge best).

(e) Does a solution exist and is it sensitive to noise/ round-off error? Two examples
from (Str p 70) showing the effects of ill conditioned matrix and of using wrong
algorithm even with a well conditioned matrix. (Matrix norm and condition
number to be discussed later.)

(f) Dealing with huge systems:

i. Special cases: sparse, banded and diagonal matrices (wikipedia and Matlab
example) [HW: solving tridiagonal systems]. Bad news: LU factorization of
a sparse matrix is not necessarily sparse (Figure), so might be best to use
an iterative method to solve the corresponding linear system of eqns.

ii. Google’s MapReduce (Hadoop) algorithm: general idea (MMD§2 intro, pp
21-22). Examples: calculating mean daily flight delay (Matlab) and
corresponding output file; matrix-matrix multiplication using one
MapReduce step (MMD§2.3.10 pp 39-40, video and text links); (Time
permitting:) the more efficient two step approach (MMD§2.3.9).

3. Eigenvalues, eigenvectors. sources.

(a) Motivation: Google’s PageRank; partitioning (clustering) of graphs/ networks;
differential equations (Str§5.1 p 258-259) and explosive development of weather
systems.
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(b) Reminder: eigenvalue problems Ax = λx, finding eigenvalues through
det(A− λI) = 0, then finding eigenvectors by solving (A− λiI)~ei = 0 (Str§5.1,
pp 260-261). Similarity transformation and diagonalization of matrices with a
full set of eigenvectors (Str§5.2, pp 271-273) and of symmetric matrices (Str 5S,

p 328). Orthogonality and projection of vectors (projection of ~b in the direction

of ~a is (~b ·~ia)~ia = (|b| cos θ)~ia using the unit vector ~ia = ~a/|a|). Orthonormal
base, Gram-Schmidt orthogonalization (Str§3.4, pp 195, 200-203).

(c) Google’s PageRank algorithm and finding the first eigenvector efficiently via the
power method: first, Google vs BMW: this and this. Modeling the Internet via a
random walker and the PageRank algorithm from p 1-7 here. See Matlab demo.
It turns out that PageRank is the eigenvector with the largest eigenvalue of the
transition matrix. The theoretical background, proving that there is a
PageRank and that it is unique is the Perron-Frobenius theorem stating that a
stochastic matrix (each row sums to one) with all positive elements has a single
largest eigenvalue equal to one. See Wikipedia for the theorem and for
stochastic matrices;

(d) The power method: (i) calculating the largest eigenvalue/ vector; (ii) including
the calculation of the largest p eigenvalues/ vectors using the block power
method; (iii) the inverse power method for calculating the smallest eigenvalue/
eigenvector; (iv) the more efficient shifted inverse power method (Str§7.3 pp
396-397; Matlab demo; it seems that the block method should work only for
normal matrices, whose eigenvectors are orthogonal, although Strang does not
mention this);

(e) More on networks and matrices: Transition matrix was covered already as part
of the PageRank algorithm above (MMD example 5.1, p 166). Adjacency
matrix (example 10.16, p 363), Degree matrix (example 10.17, p 364), Laplacian
matrix (example 10.18, p 364). [consider also Str§8.4 and snowflakes as an
example from snowcrystals.com]

(f) Spectral clustering (partitioning) of networks via eigenvectors of corresponding
Laplacian matrices (Matlab demo and notes, expanding on MMD§10.4.4 and
example 10.19, pp 364-367).

(g) (Time permitting:) Solving large eigenvalue problems efficiently: QR
(Gram-Schmidt) factorization and Householder transformations (Str§7.3)

(h) Generalized eigenvalue problems, Ax = λBx, arise in both differential equations
and in classification problems (see later in the course). If A,B are symmetric, it
is not a good idea to multiply B−1 to obtain a standard eigenproblem because
B−1A is not necessarily symmetric. Instead, transform to a regular eigenvalue
problem using Cholesky decomposition (Matlab example and notes).

(i) Linear ordinary differential equations and matrix exponentiation (Str§5.4, pp
294-295, remark on higher order linear eqns on p 296, heat PDE example on p
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297-298). Eigenvalues and stability (p 298; phase space plots from Strogatz,
Romeo and Juliet).

(j) Dramatic surprises on the path to tranquility: Non-normal matrices, transient
amplification and optimal initial conditions (notes, Matlab).

(k) Jordan form and generalized eigenvectors: when straightforward diagonalization
using standard eigenvectors doesn’t work because they are not independent.

i. Start with simple example of the issue using Matlab demo.

ii. Definition and statement of the ability to always transform to Jordan
normal form (Str, 5U p 329-330).

iii. Extreme sensitivity to round-off error: HW.

iv. Connection to ODEs: exponential of Jordan form, let Îk×k be a matrix with
1 above the diagonal, so that one Jordan block is J = λI + Î; now
eJt = (Ieλt)eÎt; Noting that Îk = 0 one finds that eÎt is given by a finite
power series leading to a form as in eqn 10 on p 331.

v. Example of second order ODE equivalent to dx/dt = Jx, with
J = [−2, 1; 0,−2]: ẋ = −2x+ y, ẏ = −2y; take the derivative of the first
ẍ = −2ẋ+ ẏ, add twice the first equation to find
ẍ+ 2ẋ = (−2ẋ+ ẏ) + 2(−2x+ y) use the second equation to find
ẍ+ 4ẋ+ 4x = 0; note that this is equivalent to
0 = (dt − (−2))2x = (dt + 2)(ẋ+ 2x) = (ẍ+ 2ẋ) + 2(ẋ+ 2x) = ẍ+ 4ẋ+ 4x;
Solution is x = c1e

−2t + c2te
−2t; To find this, substitute x = eat in eqn to

find a2 + 4a+ 4 = (a+ 2)2 = 0, so that a1,2 = 2 and therefore must add the
secular term te−2t as a second solution.

vi. How to find the Jordan form using the matrix of generalized eigenvalues
(Str App B, pp 463-468; detailed example of a simple case, and notes on
the more general case by Enrico Arbarello).

vii. (Time permitting:) Proof by recursion that a Jordan form can always be
found is also in Str Appendix B.

4. Principal component analysis, Singular Value Decomposition. sources.

(a) Motivation: dimension reduction, e.g., image compression, face recognition, El
Niño; comparing structure of folded proteins; more unknowns than equations

(b) Principal Component Analysis (PCA; also known as Factor Analysis or
Empirical Orthogonal Functions), calculation from correlation matrix (notes and
Matlab demos, based on based on appendix B of Peixoto and Oort (1992)).

(c) Example code for PCA analysis in Matlab using covariance matrix (Example
code using SVD also given below).

(d) Singular Value Decomposition (SVD): statement and examples of SVD
decomposition, X = UΣV T (Str§6.3 pp 364-365 including remarks 1,2,4,5 and
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examples 1,2; note that Aui = σivi and ATvi = σiui these are therefore “right
and left eigenvectors”). A useful proof for SVD derivation: showing that
eigenvectors of a symmetric matrix A = AT are orthogonal: consider two
eigenvectors Ax = λy, Ay = µy; then, consider the difference between the
following two identical scalars,
0 = yTAx− (yTAx)T = yTAx− xTAy = λyTx− µxTy = yTx(λ− µ), from
which we conclude that if the eigenvalues are different, the eigenvectors must be
orthogonal.

(e) Practical hints on calculating SVD: Choose the smallest of ATA or AAT ;
calculate its eigenvalues and eigenvectors to find the singular values and the
smaller set of singular vectors; use AV = ΣU , or ATU = ΣV to find the first
part of the larger set of singular vectors; complete the rest of the larger set by
starting with random vectors and using Gram-Schmidt orthogonalization.
Matlab demo.

(f) Geometric interpretation of SVD for the special case of a real square matrix
with a positive determinant (see animation and caption from Wikipedia by
Kieff, with some more details here; an additional interpretation is given below in
terms of PCA);

(g) (Time permitting:) proof of existence, not really needed after the above remarks
in Str.

(h) SVD applications:

i. Image compression, low-rank approximation, (Str p 366, Matlab demo);
variance explained (let Xn×m = f(x, t), x = x1, . . . , xn, t = t1, . . . , tm;
XTX = (UΛV T )T (UΛV T ) = V Λ2V T ; variance is sum of diagonal elements
of C = XTX/N , e.g., Cii =

∑
j XijXij/N =

∑
j VijVjiΛ

2
ii/N = Λ2

ii/N ; total
variance is sum of singular values squared, explained variance by first k
modes is

∑k
i=1 Λ2

ii/
∑n

i=1 Λ2
ii).

ii. Effective rank of a matrix (Str p 366, Matlab demo). Matrix condition
number and norm (Str§7.2, p 388-392).

iii. Polar decomposition (Str p 366-367). Applications exist in continuum
mechanics, robotics, and, our focus here: bioinformatics, the SVD-based
Kabsch Algorithm for comparing protein structures using the
root-mean-square deviation method (notes by Lydia E. Kavraki, p 1-5;
Matlab example).

iv. When number of unknowns is different from number of equations:

A. Medical tomography as an example application which may lead to either
under or over determined systems (notes, section 1).

B. Overdetermined systems: more equations than unknown and least
squares. (i) Brief reminder (notes, section 2). (ii) Using QR
decomposition (cover it first if it was not covered in the eigenvalue/
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vector section) for an efficient solution of least-square problems
(Str§7.3).

C. Under-determined systems, more unknowns then equations: Pseudo
inverse solution using SVD and a short proof that it is indeed the
smallest-norm solution (section 3 of notes, including Matlab example
there; or see Str p 369-370).

v. PCA using SVD: notes based on Hartmann, and example Matlab code for
PCA using SVD).

vi. Multivariate Principal Component Analysis and Maximum Covariance
Analysis (MCA): analysis of two co-varying data sets. E.g., M stocks from
NY and L stocks from Tokyo, both given for N times: Ymn, Tln.

A. First using “multivariate” PCA of a combined (M + L)×N data set
F = [Y ;T ] (after removing mean and normalizing each time series by
std). Second, MCA, by calculating SVD of the covariance matrix
C = Y T T whose elements are cml =

∑N
n=1 YmnTln. (notes from Dennis

Hartman, p 99-103;

B. Then a simple Matlab demo of both multivariate PCA and MCA, and a
more elaborate Matlab demo).

C. Finally, the failure of multivariate PCA to analyze correlations between
two data sets and the advantages of MCA are demonstrated by the
following Matlab demo.

vii. The Netflix challenge part I: latent factor models and SVD (first highlighted
text and Figs. 1 and 2 on pp 43-44 of Koren et al. (2009); then highlighted
parts of section 6.1 of Vozalis and Margaritis (2006); both available here;
Instead of eqn (4) in Vozalis, let the predicted rating of movie a by user j be
praj =

∑n
i=1 simji(rrai + r̄a)/(

∑n
i=1 |simji|), where simji is the similarity

between the ratings of movies i, j by all users, and the sum is over movies)

5. Optimization, linear programming. sources. (Time permitting)
Many applications can be formulated as a minimization of a quadratic expression
(optimization), or as a set of linear inequalities plus a minimization problem (linear
programming).

(a) Motivation: the stable marriage problem, production planning, portfolio
selection (Str, p 380); the transportation problem, minimization of production
costs, minimization of environmental damage and maximization of profits (here)

(b) Test for the minimum of a general smooth nonlinear multivariate function based
on second derivative matrix (Hessian), positive definite matrices, bilinear/
quadratic forms (Str§6 p 343 after remark 6; p 345-346 from “Higher
dimensions: linear algebra” until eq 6, including examples 3 and 5; p 349
beginning of §6.2; p 350 theorem 6B and proofs only until and including
sentence after eq 2)
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(c) How to find the minimum of a cost function of many variables: large-scale
optimization problems.

i. A general decent algorithm, requires search direction and line search
algorithms (GMW§4.3.1)

ii. Search direction first try: Steepest descent and its poor convergence (figure,
slide, or GMW§4.3.2.2).

iii. Improved search direction: conjugate gradient algorithm (notes based on
GMW§4.8.3 including Fig 4o).

iv. Graphical interpretation of clustering of Hessian eigenvalues: cost surfaces
of J = x2 + y2 vs J = x2 + y2/1000 and corresponding Hessian matrices
diag(1, 1) vs diag(1, 1/1000); similarly J =

∑100
i=1 x

2
i which will converge in

one step, vs J =
∑50

i=1 x
2
i +

∑100
i=51 x

2
i /1000 has two clusters of eigenvalues

and would require two iterations to converge. Transformation of coordinates
that leads to perfect conditioning: if J = xTHx, let H = RTR and define
y = Rx, then J = xTHx = xTRT IRx = yT Iy.

v. Mention briefly: c-g with restarts (§4.8.3.4); preconditioned c-g using
iteratively improving approximation to the Hessian to increase eigenvalue
clustering (GMW§4.8.5)

vi. Line search and step length δ: e.g., assume cost is quadratic along search
direction J(δ) = J(δ = 0) + aδ + bδ2 and use initial cost and gradient plus
the cost at some trial step δ1 to find the expected minimum location. Or use
value and gradient at two positions and a cubic approximation.

(d) Linear programming (Str§8, Sultan (1993))

i. Definition: Minimize cTx subject to Ax ≥ b and x ≥ 0, where x is n
dimensional and A is m rows and n columns. (Strp 419)

ii. Example applications: Diet problem, portfolio problem and production
problem. (Str p 417, 418)

iii. Preliminaries:

A. Inequality constraints, convex region, linear cost;

B. Corners as a meeting point of n hyper-planes (n− 1 dimensional) at a
point, e.g., two lines on the plane or three planes in 3d;

C. Feasible solutions (in the allowed subspace) and basic solutions
(corners).

D. Theorem that minimum and maximum occur at a corner, geometric
interpretation

E. Geometric method in 2d: find cost at all corners, look for smallest value
(first part of the Matlab demo)

F. Bringing to standard canonical form, slack variables

iv. Simplex algorithm: using the two-phase method
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A. Definition and geometric interpretation of phase I and phase II, moving
along edges.

B. Phase II using the tableau (notes, section 2; Matlab program using
linprog for solving the phase II problem with slack variables, and
another Matlab example code for manipulating the tableau step by step)

C. Phase I using slack variables and another cost definition (notes, section
3)

v. (Time permitting:) dual problem (Str§8.3)

vi. Brief mention: Interior point methods

vii. Application to network models (Str§8.4, p 441-442)

viii. Application to the marriage problem (Str§8.4, p 443-444)

(e) (Time permitting:) Least-square minimization with equality and inequality
constraints using SVD (Tziperman and Hecht, 1988).

6. Data mining overview. sources, wikipedia.
Brief overview of subjects that will be covered in more detail below. slides.

(a) Similar items and Frequent patterns/ itemsets (association rule learning)

(b) Unsupervised learning: classification

(c) Supervised learning: clustering

(d) (Time permitting:) Outlier/ anomaly detection, Summarization

7. Similar items and frequent patterns. sources.

(a) Motivation for similar items: face recognition, fingerprint recognition, comparing
texts to find plagiarism, Netflix movie ratings. (MMD§3)

(b) Similar items:

i. Jaccard Similarity index (MMD§3.1.1 p 74; Matlab demo for logicals,
numbers, text files).

ii. Converting text data to numbers: Shingles, k-shingles, hashing, sets of
hashes (MMD§3.2 p 77-80; section 1 of notes and corresponding Matlab
demo of an oversimplified hash function; another demo for the Cyclic
Redundancy Check (crc32) hash function)

iii. MinHash algorithm for comparing sets (MMD§3.3 p 80-86, and section 2 of
notes with summary of MinHash steps)

A. Matrix representation of sets (MMD§3.3.1 p 81)

B. Minhashing: creating a similarity-conserving signature matrix that is
much smaller than the original data matrix, and that allows for an
efficient comparison of sets. Signature matrix is based on a set of
random permutations of the rows of the data matrix
(MMD§3.3.2,§3.3.4 p 81-83)
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C. “Proof” that the probability of having similar MinHash signatures of
two sets is equal to the Jaccard similarity of the two sets (MMD§3.3.3
p 82-83)

D. MinHash signature estimated using a set of random hash functions
acting on the data matrix (MMD§3.3.5 p 83-86)

E. Additional resources: Matlab example of calculating signature matrix
and using it to estimate Jaccard similarity; A more elaborate example
python code by Chris McCormick, run using
∼/bin/ipython qtconsole)

iv. (Time permitting:) Locality-Sensitive Hashing (LSH, MMD§3.4-3.8)

(c) Motivation for frequent patterns: market basket analysis: hot dogs and mustard,
diapers and beer; frequent combined Internet searches: Brad and Angelina;
medical diagnosis: biomarkers in blood samples and diseases; detecting
plagiarism. (MMD§6)

(d) Frequent patterns and association rules.

i. Mining frequent patterns (and association rule learning): support for set I
(number of baskets for which I is a subset); I is frequent if its support is
larger than some threshold support s; (MMD§6.1 p 201-206)

ii. Association rules I → j between a set I and an item j; confidence (fraction
of baskets with I that also contain j) and interest (difference between
confidence in I → j and fraction of baskets that contain j);
(MMD§6.1.3-6.1.4)

iii. Apriori algorithm: (MMD§6.2, highlighted parts on p 209-217)

A. Baskets as sets of numbers (MMD§6.2.1 p 209)

B. Monotonicity of itemsets (MMD§6.2.3 p 212)

C. A-priory first pass; renumbering of relevant itemsets between passes;
and second pass to identify frequent pairs (MMD§6.2.5; a simple
Matlab example)

D. Beyond frequent pairs: larger frequent itemsets (MMD§6.2.6)

E. Example of finding association rules via A-priori algorithm, Matlab code
by Narine Manukyan, run using demoAssociationAnalysis;

8. Unsupervised learning: cluster analysis. sources.

(a) Motivation: Archaeology/Anthropology: group pottery samples in multiple sites
according to original culture; Genetics: clustering gene expression data groups
together genes of similar function, grouping known genes with novel ones reveals
function of the novel genes; TV marketing: group TV shows into groups likely
to be watched by people with similar purchasing habits; Criminology: clustering
Italian provinces shows that crime is not necessarily linked to geographic
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location (north vs south Italy) as is sometimes believed; Medical imaging:
measuring volumes of cerebrospinal fluid, white matter, and gray matter from
magnetic resonance images (MRI) of the brain using clustering method for
texture identification; Internet/ social networks: identify communities; Internet
search results: show relevant related results to a given search beyond using
keywords and link analysis; Weather and climate: identify consistently
re-occurring weather regimes to increase predictability.

(b) Overview: Two main approaches to clustering: hierarchical (each point is an
initial cluster, then clusters are being merged to form larger ones) and
point-assignment (starting with points that are cluster representatives, centroids,
and then adding other points one by one). Other considerations: Euclidean vs
non, and large vs small memory requirements (MMD§7.1.2, p 243).

(c) Distances/ metrics:

i. Requirements from a distance: MMD§3.5.1, p92-93.

ii. Examples of distance functions (MMD§3.5, p 93-97): Euclidean (L2

distance), Lr distance, Manhattan (sum of abs values, L1 norm), maximum
(L∞), Hamming distance between two strings of equal length or between
vectors of Booleans or other vectors, cosine (difference between angles),
Jaccard distance (one minus Jaccard similarity), edit. Noting that
“average” distance does not necessarily exist in non Euclidean spaces (p97).

(d) Curse of dimensionality: problems with Euclidean distance measures in high
dimensions, where random vectors tend to be far from each other and
perpendicular to each other, making clustering difficult (MMD§7.1.3 p 244-245,
Matlab demo)

(e) Hierarchical clustering: intro and example (MMD§7.2.1, Figs 7.2, 7.3, 7.4, 7.5,
and the resulting dendogram in Fig 7.6), efficiency (MMD§7.2.2, p 248-249),
merging and stopping criteria (MMD§7.2.3), in non Euclidean spaces using
clustroids (MMD§7.2.4, p 252-253). (Use this Matlab script to run three
relevant demos: First detailed hand calculation, than the example script run
first with argument (2) and then with (20). The “simpler” version there is a
bare bone version that can be useful in HW)

(f) K-means algorithms: these are point-assignment/ centroid-based clustering
methods. Basics (MMD§7.3.1), initialization (MMD§7.3.2; e.g., initialize
centroids on k farthest neighbors), choosing k (MMD§7.3.3). (run two demos
using Matlab script, first a detailed hand calculations and then the a more
detailed example)

(g) Self-organizing maps (a type of an artificial neural network!):

i. First the idea and an example application of identifying weather patterns in
Figs 1 and 2 (including the one paragraph discussion of the Sammon
mapping scheme on p 6357) of Johnson et al. (2008);
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ii. A first Matlab demo with an explicit demonstration of the algorithm;

iii. Refinements: (1) allow for more representative points (hence more clusters),
still in a 1d configuration; (2) allow a 2d arrangements of the representative
points; (3) make learning rate decrease in time; (3) Make neighborhood
kernel more restrictive in later iterations of the algorithm, i.e., make
adjustment to representative points other than nearest be smaller; (4) make
the learning rate at later stages be smaller for points that are further away
from the representative point (i.e., make η be a function of the distance
from the data point and the representative point).

iv. Then the appendix (p 6367-6369 and Fig A1) for the actual method and a
simple example;

v. A Matlab example using Matlab’s SOM routines, demonstrating the method
again and showing sensitivity of clustering results to assumed 2d topology.

vi. Sammon map of the results to find out which clusters are similar.

(h) Mahalanobis distance: first for stretched data, diagonal covariance matrix, then
non-diagonal, stretched and rotated (notes).

(i) Spectral clustering into two sub-clusters. First a reminder of network clustering
notes. Then for clustering of other data: Form a distance matrix sij = |xi − xj|,
defined here as the distance between points i and j in the set; then a “similarity”
matrix (equivalent to adjacency matrix in network clustering) using, e.g.,
wij = exp(−s2ij/σ2), then a diagonal degree matrix di =

∑
j wij, and finally the

Laplacian matrix L = D−W (highlighted parts in p 1-4 of Von-Luxburg (2007);
Matlab demo, try first with argument 2 and then 20). Comments: (1) Wikipedia
adds that “The algorithm can be used for hierarchical clustering by repeatedly
partitioning the subsets in this fashion”. (2) Such clustering using eigenvector 2
was already covered for networks, using the Laplacian matrix of the network, in
the eigenvalues/ eigenvectors section. (3) (Time permitting) Can also cluster
into k > 2 parts using the first k eigenvectors, see Von-Luxburg (2007).

(j) k-means on large data sets that cannot be fully contained in memory: BFR
algorithm and Summarization (MMD§7.3.4 and 7.3.5, p 257 to middle of 261)

(k) CURE (Clustering Using Representatives) algorithm, for clusters that have
complex shapes, like concentric rings. This is a point-assignment clustering
algorithm, like k-means, not relying on centroids but on a set of representative
points that span the cluster, allowing the cluster to take more general shapes
(MMD§7.4, p 262-265; and a Matlab demo of the first step via Hierarchical
clustering using the appropriate distance measure)

(l) (Time permitting:) Outlier/ anomaly detection: a brief overview only.
Motivation: unusual credit activity as indication of credit card theft. Detection
using statistical methods e.g., assuming Gaussian distribution;
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(m) (Time permitting) GRGPF algorithm combining hierarchical and
point-assignment approaches, for large data sets (MMD§7.5). Clustering for
Streams (MMD§7.6). Simrank; Density-based (DBSCAN).

9. Supervised learning: classification. sources.
(We stick to Euclidean distances for now, other options were discussed under cluster
analysis).

(a) Motivation: Optical character recognition, handwriting recognition, speech
recognition, spam filtering, language identification, sentiment analysis of tweets
(e.g., angry/ sad/ happy), amazon book recommendation, Netflix challenge,
on-line advertising and ad blocking on Internet sites, credit scores, predicting
loan defaulting, and Mastering the game of Go!

(b) Machine learning Introduction (MMD§12.1, p 439-443)

(c) Perceptrons: Intro (MMD§12.2 p 447); zero threshold (MMD§12.2 first two
paragraphs, 12.2.1, p 448-450); allowing threshold to vary (MMD§12.2.4, p
453); problems (MMD§12.2.7, simply show Figs. 12.11,12.12,12.13 on p
457-459). Use Matlab demo, see comments at top of code for useful cases to
show; for adjustable step I made step size (η) proportional to deviation of
current data point that’s not classified correctly (η = |x ·w − θ|), but bounded
on both sides, say 0.01 < η < 1.

(d) Support vector machines:

i. Introduction, formulation for separated data sets, formulation for
overlapping data sets, solution via gradient method (MMD§12.3, p
461-467);

ii. Misc Matlab demos, run all relevant ones using Matlab script.

iii. Note: in a case of data composed of two clusters that can be separated
perfectly well, it is useful to choose a large C = 1000 or so to find an
appropriate solution.

(e) Multi-Layer Artificial Neural Networks (a brief introduction): these are based on
a very powerful extension of the perceptron idea, and allow computers to
perform image/ voice/ handwriting/ face recognition, as well as Mastering the
game of Go. See highlighted parts of the two introductory notes in the relevant
Sources sub-directory, and then Matlab example that demonstrates character
recognition using Matlab’s neural network toolbox.

(f) k-nearest neighbors (k-NN):

i. Classification: finding a label of input data based on majority of k nearest
training data neighbor(s) when label is discrete such as type of dog or sick
vs healthy. Start with a single neighbor, including Voronoi diagram
(MMD§12.4, p 472-474 including Fig. 12.21; then Mitch, Fig. 8.1, p 233
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which shows how the results of nearest neighbor can be different from k = 5
nearest ones)

ii. Locally-weighted kernel regression: e.g., estimating house prices as function
of age and living area from similar houses (Section 1 of notes based on
Mitch§8.3.1 p 237-238; Matlab demo)

iii. (Time permitting:) Using PCA for dimensionality reduction to avoid curse
of dimensionality when looking for nearest neighbors in a high-dimensional
space. (Section 2 of notes)

iv. k-NN application: the Netflix challenge part II (presentation by Atul
S. Kulkarni, remote and local links).

(g) Decision trees:

i. First, definition of entropy in information theory (from Wikipedia, local).

ii. ID3 algorithm: motivation and outline (Mitch§3.1-3.3); entropy measure
(Mitch§3.4.1.1); information gain (Mitch§3.4.1.2); ID3 algorithm (Mitch,
Table 3.1, p 56); example (Mitch§3.4.2, p 59-61, here).

iii. (Time permitting:) If the potential labeling variable is a continuous number,
need to try all possible values to find the one that leads to the maximum
entropy gain, as demonstrated for classifying houses into two neighborhoods
based on house price and house area in the following Matlab example.

(h) (Time permitting:) Additional issues:

i. Avoiding over-fitting, pruning and dealing with continuous variables and
thresholds (Mitch§3.7).

ii. C4.5 algorithm for decision trees (Mitch§3.7)

iii. Fisher’s Linear discriminant analysis (LDA) leading to a generalized
eigenvalue problem (notes)

iv. From binary classification (two classes) to multiple classes: one vs rest and
one vs one strategies (here)

v. From linear to nonlinear classification, the kernel trick.

vi. Nearest neighbors using k-d trees.

10. Modeling and prediction. sources.

(a) Motivation: ’predictive analytics’; crowd-sourcing/ crowd wisdom for models:
the Netflix challenge part III, global warming, El Niño; Kalman filter: used car
pricing, guidance and navigation systems of cruise missiles, weather prediction;

(b) Combining different methods/ models into a single, more effective, prediction.
One example: sequential learning algorithms

11. Review. sources.
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4 Useful links

1. http://psi.cse.tamu.edu/teaching/lecture notes/
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