
MATLAB workshop

DEAS IT: Academic Computing Support

23rd September 2004

Spring 2004

Contents

1 Introduction to Matlab c© 3
1.1 What Is MATLAB? . 3
1.2 The MATLAB System . 3
1.3 Starting and stopping MATLAB 4
1.4 Basic MATLAB syntax . 4
1.5 Where to get help . 6

2 MATLAB Desktop 7

3 Matrices and vectors 11
3.1 Transpose of matrices and vectors 12
3.2 Creating vectors . 12
3.3 Creating matrices . 14
3.4 Basic matrix operations . 15
3.5 Indexing into a matrix . 16

4 Graphics 18
4.1 2-D plots . 18
4.2 3-D plots . 19
4.3 Tables . 20

5 Programming with MATLAB 26
5.1 Using m-files . 26
5.2 Scripts . 27
5.3 Functions . 27
5.4 Program flow control . 28

1

6 MATLAB workspace and File I/O 30
6.1 MATLAB workspace . 30
6.2 Function workspace . 31
6.3 Native data files . 31
6.4 Data import and export . 31

7 Ordinary Differential Equations 33
7.1 Second order homogeneous linear equation with constant coeffi-

cients . 33
7.2 Non-homogeneous 2nd order differential equations 35

8 Sparse Matrices 39
8.1 Storage of data . 39
8.2 Creating sparse matrices . 40
8.3 Viewing sparse matrices . 42
8.4 Sparse matrix computations . 44
8.5 Reordering of matrices . 45

9 Numerical solutions of Ordinary Differential Equations 46

10 SIMULINK 50
10.1 Getting Started in Simulink . 50
10.2 Block Diagram Construction . 51
10.3 General Simulink Tips . 53
10.4 More information . 54

2

1 Introduction to Matlab c©

1.1 What Is MATLAB?

MATLAB is a high-performance language for technical computing. It integrates
computation, visualization, and programming in an easy-to-use environment
where problems and solutions are expressed in familiar mathematical notation.
Typical uses include

• Math and computation

• Algorithm development

• Data acquisition

• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

• Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does
not require dimensioning. This allows you to solve many technical computing
problems, especially those with matrix and vector formulations, in a fraction of
the time it would take to write a program in a scalar non-interactive language
such as C or Fortran.

The name MATLAB stands for matrix laboratory . MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects. Today, MATLAB engines incorporate the LAPACK
and BLAS libraries, and several Toolboxes that allow for real-life engineering
problem solving through an intuitive interface.

1.2 The MATLAB System

The MATLAB system consists of several different components all of which can
be used individually or together to solve a problem. The first and most apparent
piece is the Development Environment. This is the set of tools that let you do all
the basic functions like entering commands, view and save data etc. The second
element in MATLAB is the Mathematical Function Library.This contains the
various mathematical functions ranging from the elementary (like sum, sine
etc.) to the complicated (like Bessel Functions, etc.). The third important
tool within MATLAB is the graphics package that comes with it. This allows
users to graph both data and functions in 2D and 3D. When using MATLAB
in the interactive mode,these three would probably the most used components
of MATLAB.

In addition to these three components MATLAB has the MATLAB language.
This is a high-level matrix/array language with flow control, functions, data

3

structures etc. This component is particularly useful when writing scripts and
functions to run in a non-interactive mode.

The final component in MATLAB is the Application Programming Interface,
otherwise known as the API. This allows users to extend MATLAB by writing
specialized functions and methods in other high-level languages like C/C++ or
Fortran. We will not be using this component in this workshop.

1.3 Starting and stopping MATLAB

• On Windows platforms, to start MATLAB, double-click the MATLAB
shortcut icon on your Windows desktop.

• On UNIX platforms, to start MATLAB, type matlab at the operating
system prompt.

• On Mac OS X, start MATLAB by double-clicking the LaunchMATLAB
icon in Applications.

You can change the directory in which MATLAB starts, define startup options
including running a script upon startup, and reduce startup time in some situ-
ations.

To end your MATLAB session, select Exit MATLAB from the File menu
in the desktop, or type quit in the Command Window. To execute specified
functions each time MATLAB quits, such as saving the workspace, you can
create and run a finish .m script.

On Unix platforms typing matlab -h will give a listing of command line
options that allow control over how MATLAB is opened. On a Mac OS X use:

/Applications/MATLAB6p5/bin/matlab -h

The ones of greatest use are -nodesktop -nojvm -nosplash. If you are using
MATLAB by connecting to a remote unix machine with either a poor connection
or no X windows support, this will launch a bare bones MATLAB environment
that runs a lot faster than the one with the full graphical user interface support.
Note that on a Mac OS X machine it is possible to get this brief version of
MATLAB by typing

/Applications/MATLAB6p5/bin/matlab -nodesktop -nosplash -nojvm

(this assumes that MATLAB was installed in the default location of the disk).
NOTE: MATLAB on Mac OS X will start X11 before starting MATLAB. It

is very important that the X11 application stay running for the entire duration
MATLAB is running. If the X11 application is closed before MATLAB is quit,
you will not be able to run MATLAB any further and will have to shut it down.

1.4 Basic MATLAB syntax

MATLAB requires that all variable names be assigned numerical values prior
to being used. Typing the name (say x), then the equal to sign (=), followed by

4

the numerical value (viz. 5) and finally Enter assigns the numerical value to
the variable (in our example 5 is assigned to x).

For example:

>> p=7.1

p =

7.1000

A semicolon at the end of the expression typed by the user suppresses the
system’s echoing of entered data

>> p=7.1;

>>

It is also possible to combine expressions with a semicolon sign or a comma
sign. Depending on whether a semicolon or a comma is used different things
are echoed by the system.

>> p=7.1; x=4.92;

>> p=7.1, x=4.92;

p =

7.1000

>> p=7.1, x=4.92,

p =

7.1000

x =

4.9200

>> p=7.1; x=4.92,

x =

4.9200

The arithmetic operators in MATLAB are addition (+), subtraction (-), mul-
tiplication (*), division (/) and exponentiation (^). For example the equation
below:

t =

(

1

1 + px

)k

is written in MATLAB as:

t = (1/(1+p*x))^k

Some useful keys to remember are:

• The ↑ key scrolls through previously typed commands. To recall a partic-
ular entry from the history, type the first few letters of the entry and then
press the ↑ key.

• The ← and → keys allow you to edit the previously typed command

• The ESC key clears the command line.

• Ctrl+C quits the current operation and returns control to the command
line.

5

If you need to shutdown MATLAB in the middle of work, it is possible to
save your work with the save keyword. This writes out a file called matlab.mat

to the current directory. When MATLAB is restarted, you can load your work
back with the load keyword. This loads all the variables you defined in your
last session into the current session, and you can continue your work.

>> p=7.1

p =

7.1000

>> save

Saving to: matlab.mat

>> quit

Restart MATLAB and then say the following:

>> load

Loading from: matlab.mat

>> p

p =

7.1000

Note that you now have p defined in the new session. Note that this will not
work if you do not have write permission in your current directory:

>> cd /etc

>> save

??? Error using ==> save

Unable to write file matlab.mat: permission denied.

Additionally you can use the keyword diary to save your commands into a file. If you type \verb+diary+

beginning of your session MATLAB will create a file called {\it diary} in your working directory and store

the commands you type in it. This file can be useful to then convert into a script or a function later.

1.5 Where to get help

MATLAB comes with an enormous amount of help. You can type help at
the command line. Typing help followed by some keyword or function will
give detailed help on that function. If you are not running MATLAB with the
-nodesktop option you can view a large set of demos by typing demo

There is a lot of material online at the web site of Mathworks (http://www.mathworks.com)
(the makers of MATLAB).

In addition you can email for assistance at matlab_fall04@deas.harvard.edu.

6

2 MATLAB Desktop

When you start MATLAB, the MATLAB desktop appears, containing tools
(graphical user interfaces) for managing files, variables, and applications asso-
ciated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the Figure
1.

Figure 1: The MATLAB desktop

7

You can change the way your desktop looks by opening, closing, moving,
and resizing the tools in it. Use the View menu (see Figure 2) to open or close
the tools.

Figure 2: The MATLAB desktop: View menu

You can also move tools outside the desktop or move them back into the
desktop (docking), see the Figure 3.

Note that these screenshots are from a linux machine. They may look dif-
ferent in a Mac OS X machine or a Windows machine.

In particular on a Mac OS X machine the File, View, etc. menu is not at
the top of the MATLAB desktop but (like all other Mac OS X applications) at
the top of the screen, as is shown in the Figure 4.

On a Windows XP machine the MATLAB desktop looks as in Figure 5.
You can specify certain characteristics for the desktop tools by selecting

Preferences from the File menu. For example, you can specify the font char-
acteristics for Command Window text. For more information, click the Help
button in the Preferences dialog box.

In addition to the File menu at the top MATLAB also has a Start button
at the bottom left corner, that has shortcuts to some commonly used activities
as shown in Figure 6

8

Figure 3: The MATLAB desktop: Docking menu

Figure 4: The MATLAB desktop: Mac OS X

9

Figure 5: The MATLAB desktop: Windows XP

Figure 6: The MATLAB desktop: Start button

10

3 Matrices and vectors

An array A of m rows and n columns is called a matrix of order (m× n). The
elements of A are referred to as Aij where i is the row number and j is the
column number. The simplest way of entering the matrix in MATLAB is by
entering it explicitly.

To enter the matrix, simply type in the Command Window

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

The order of the matrix A is determined with:

>> size(A)

ans =

4 4

Note that the function size returns two values. It is possible to assign these
values to variables as follows:

>> [m, n] = size(A)

m =

4

n =

4

Note that to enter the matrix as a list of its elements you only have to follow
a few basic conventions:

• Separate the elements of a row with spaces or commas.

• Use a semicolon, ;, to indicate the end of each row.

• Surround the entire list of elements with square brackets, [].

It is possible to mix spaces and commas when declaring a matrix as shown below

>> A = [16, 3, 2, 13; 5, 10 11, 8; 9, 6 7, 12; 4, 15, 14 1]

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

But this can get very hard to read.
Vectors are just a special case of matrices. If m = 1, then A is a column

vector. Similarly if n = 1 then A is a row vector.

11

The distinction between row and column vectors are important because of
the rules of multiplying vectors and matrices. For example, suppose you have a
matrix A, a column vector c and a row vector r. Only the following operations
are allowed: A.c and r.A. This can be seen in MATLAB as follows:

>> c=[3 2 1 4]’;

>> r=[3 2 1 4];

>> r*A

ans =

83 95 91 71

>> A*c

ans =

108

78

94

60

>> A*r

??? Error using ==> *

Inner matrix dimensions must agree.

>> c*A

??? Error using ==> *

Inner matrix dimensions must agree.

3.1 Transpose of matrices and vectors

A transpose of a matrix is defined as follows:





1 2
3 4
5 6





T

=

[

1 3 5
2 4 6

]

In a general case the elements of the transpose AT of the matrix A with elements
Aij is simply the matrix with elements Aji.

In MATLAB the ’ operator takes the transpose of a matrix or a vector.
Transposing a row vector turns it into a column vector and vice-versa. For
example we could take our column vector c from above and transpose it to get
a row vector.

>> cr=c’;

>> cr*A

ans =

83 95 91 71

3.2 Creating vectors

There several ways of creating vectors that can be very useful. The simplest and
probably most commonly used method create a vector uses the colon notation

12

x = s:d:f

where s is the start of vector, d is the increment (or decrement) between the
elements of the vector and f is the last element of the vector. Obviously this
can be used when the elements of the vector are equispaced. For example:

>> x=0:0.3:pi;

>> x’

ans =

0

0.3000

0.6000

0.9000

1.2000

1.5000

1.8000

2.1000

2.4000

2.7000

3.0000

Size of the vector can be got from length(x).

>> length(x)

ans =

11

If d is ignored MATLAB assumes an increment of 1.

>> x=0:pi

x =

0 1 2 3

On the other hand to specify n equally spaced intervals use the following:

>> x=linspace(0, pi, 7)

x =

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

In this case the increment or decrement is (final - start)/(n-1).
To specify equal spacing in logarithm space use the following:

>> logspace(1,2,7)

ans =

10.0000 14.6780 21.5443 31.6228 46.4159 68.1292 100.0000

in this case MATLAB creates the vector, [10s10s+d . . . 10f], where d is d =
(f − s)/(n− 1). Note that if f is π then the elements of the vector are numbers
between 10s and π. In this case the interval d is (log10(π)− s)/(n− 1).

Of course it is possible to explicitly write out the matrices as we have seen
before. It is also possible to create vectors from matrices as will be shown later.

13

3.3 Creating matrices

The easiest way of creating matrices is as described before, by listing members
explicitly.

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

It is also possible to create a matrix from a group of row vectors. For example

>> v_1 = [1 2 3];

>> v_2 = [4 5 6];

>> v_3 = [7 8 9];

>> A = [v_1; v_2; v_3]

A =

1 2 3

4 5 6

7 8 9

The order of A is 3 × length(v 1).

>> size(A)

ans =

3 3

>> length(v_1)

ans =

3

In addition there are a few utility routines to create matrices:

• zeroes(m, n): a matrix with all zeros of order m× n.

• ones(m, n): a matrix with all ones.

• eye(m, n): the identity matrix (ones along the diagonal, zeros everywhere
else).

• rand(m, n): uniformly distributed random elements.

• randn(m, n) : normally distributed random elements.

• magic(m): a square matrix whose elements have the same sum, along the
row, column and diagonal. An example

>> magic(3)

ans =

8 1 6

3 5 7

4 9 2

14

• pascal(m): a pascal matrix. An example would be:

>> pascal(3)

ans =

1 1 1

1 2 3

1 3 6

3.4 Basic matrix operations

You have already seen the transpose operator ’ before. In addition there are the
following list of operations possible on a matrix:

• ^: exponentiation

• *: multiplication

• /: division

• \: left division. The operation A\B is effectively the same as INV(A)*B,
although left division is calculated differently.

• +: addition

• -: subtraction

One very important to thing to note is the automatic promotion of scalars.
For example when adding a m × n order matrix A to a scalar x, the scalar is
promoted to a matrix of order m × n with every element equal to the original
scalar .

>> w = [1 2; 3 4] + 5

w =

6 7

8 9

There are also a set of operations that apply to the matrices on a element by
element basis. These are called array operations. Examples are:

• .’ : array transpose

• .^ : array power

• .* : array multiplication

• ./ : array division

It is very important to distinguish between these. In the example below with
two 2 × 2 matrices, a matrix multiplication * and an array multiplication .*

result in complete different matrices.

15

>> A=[1 2; 3 4];

>> B=[5 6; 7 8];

>> A*B

ans =

19 22

43 50

>> A.*B

ans =

5 12

21 32

3.5 Indexing into a matrix

Indices in MATLAB follow the “fortra” notation of starting at 1 and going up
to the order of the matrix. So we have the following:

>> A=rand(2)

A =

0.9501 0.6068

0.2311 0.4860

>> A(2,2)

ans =

0.4860

It is also possible to use a single index, which goes top to bottom (column
first) and then left to right (row second).

>> A(4)

ans =

0.4860

In other words it is possible to refer to the element Aij as A(i, j) or as
A((i-1)*m+j), where m is the no. of rows of the matrix.

A very powerful operator in indexing into a MATLAB matrix is the : oper-
ator. For example:

>> A(:,end)

ans =

0.6068

0.4860

gives the last column of the matrix. Or

>> A(1:2,1:1)

ans =

0.9501

0.2311

gives the first (1:1) column both (1:2) rows. It can now be seen that it is
possible to create vectors from the rows and columns of a matrix as follows:

16

>> r=A(1:1, 1:2)

r =

0.9501 0.6068

>> c=A(1:2, 1:1)

c =

0.9501

0.2311

MATLAB has a lot more information about matrices and the kind of oper-
ations you can do with them. To read that information click on the Help link
at the top of the desktop (on Mac OS X it is on the top of the screen). Then
select the Contents view. Click on the words MATLAB. If you see a small “+”
sign to the left of MATLAB click it to open the documentation tree. Then click
on the “+” sign to the left of Mathematics and click on Matrices and Linear

Algebra.

17

4 Graphics

4.1 2-D plots

The basic 2-D plotting routine in MATLAB is plot(xdata, ydata, ’color linestyle marker’).
For example:

>> x=-5:0.1:5;

>> sqr=x.^2;

>> pl1=plot(x, sqr, ’r:s’);

produces the Figure 7.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

Figure 7: A simple 2D plot

To plot a second plot on top of an existing plot, use hold on. This is demon-
strated in Figure 8. Obviously, hold off forces the next plot to show up on a
different window.

>> cub=x.^3;

>> hold on

>> pl2=plot(x, cub, ’k-o’);

MATLAB allows the annotation of the plots with a few keywords.

>> title(’Demo plot’);

>> xlabel(’X Axis’);

>> ylabel(’Y Axis’);

>> legend([pl1, pl2], ’x^2’, ’x^3’);

produces Figure 9

18

−5 −4 −3 −2 −1 0 1 2 3 4 5
−150

−100

−50

0

50

100

150

Figure 8: A 2D plot displaying overlay

4.2 3-D plots

It is possible to draw 3-D line plots exactly the same way as 2-D plots using
plot3(x, y, z); where x, y and z are vectors of same length. For example
the following:

>> z=0:0.1:40;

>> x=cos(z);

>> y=sin(z);

>> pl=plot3(x, y, z);

produces Figure 10.
A far more powerful set of 3D plotting functions are those that create sur-

faces, contours and so on. The basic surface plotting routines are surf and mesh.
If we have a surface defined by z = f(x, y) then the surface plot is generated
by surf(x, y, z). For example the following code:

>> xx1=linspace(-3, 3, 15);

>> xx2=linspace(-3, 13, 17);

>> [x1, x2] = meshgrid(xx1, xx2);

>> z=x1.^4+3*x1.^2-2*x1+6-2*x2.*x1.^2+x2.^2-2*x2;

>> pl=surf(x1, x2, z);

results in Figure 11.
The possibilities of complex plots are quite enormous. To see the capabilities

of MATLAB look at the graphics demos. To do this click on Help at the top

19

−5 −4 −3 −2 −1 0 1 2 3 4 5
−150

−100

−50

0

50

100

150

X Axis

Y
 A

xi
s

Demo plot

x2

x3

Figure 9: A 2D plot with annotations

of the desktop, as usual. Then click on the word Demos on the top left. Then
click the “+” sign to the left of MATLAB. Then click the “+” sign to the left of
Graphics. Try any one of the demos listed. Particularly attractive ones are
Teapot, Viewing a Penny and Earth’s Topography.

4.3 Tables

Another important related need when presenting data is to produce tables.
Frequently summary data can be most easily read when presented in the form
of a table. This allows the most comparable numbers to be visible next to each
other for quick numerical comparison. This can be easily accomplished by using
the file I/O routines.

Consider for example finding the roots of a function, that is the values where
the functions is equal to zero. Let us take as an example the function,

f(x) = x− 12x1/3 + 12

Lets use a fixed point method to find the roots. This is an iterative method
where:

xk+1 = g(xk) = xk + f(xk)

Then there will be a x∗ such that x∗ = g(x∗) which gives f(x∗) = 0. For the

20

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30

35

40

Figure 10: A simple 3D plot

function of interest let us pick three functions g(x):

g(xk) = 12x
1/3
k − 12

g(xk) =

(

xk + 12

12

)3

g(xk) =
8x

1/3
k − 12

1− 4x
−2/3
k

The first function can be got by setting f(x) = 0 and separating the first x

term. The second function is by separating out the x
1

3 term. The last function
is just a good guess.

If we plot the function f(x) we will see easily see where the zeros are. We
can do this using the following commands:

>> x=linspace(0.1, 30, 50); % generate 50 equispaced points between 0.1 and 30

>> f=x-12*x.^(1/3)+12; % calculate the function value at each x (note the array op.)

>> z=zeros(length(x), 1); % a row vector of same size as x full of zeros

>> plot(x, f, ’b-’, x, z, ’k-’); % plot x vs. f (blue line) and x vs. z (black line)

>> xlabel(’x’);

>> ylabel(’f(x)’);

This produces the Figure 12.
As can be seen, the function f(x) has two roots, one between 1&2 and

another one between 21&22. The root finding algorithm is very simple. Given
a choice of g(x),

21

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
0

50

100

150

200

Figure 11: A 3D surface plot

>> xguess=1; % start with an initial guess of 1

>> g=xguess;

>> f=g-12*g.^(1/3)+12;

>> err=norm(f); % (\sum_k f(x_k)^2)^(1/2)

>> tol=1.e-5;

>> while (err>tol) % iterate until error is small

g=12*g.^(1/3)-12;

f=g-12*g.^(1/3)+12;

err=norm(f);

disp(sprintf(’Error = %f’, err));

end

Error = 12.000000

Error = 27.473142

Error = 18.106115

Error = 8.829625

Error = 4.256514

Error = 2.108523

Error = 1.067871

Error = 0.548209

Error = 0.283578

Error = 0.147292

Error = 0.076671

Error = 0.039956

Error = 0.020835

Error = 0.010868

Error = 0.005670

22

0 5 10 15 20 25 30
−4

−2

0

2

4

6

8

x

f(
x)

Figure 12: The roots of the function f(x)

Error = 0.002958

Error = 0.001543

Error = 0.000805

Error = 0.000420

Error = 0.000219

Error = 0.000114

Error = 0.000060

Error = 0.000031

Error = 0.000016

Error = 0.000008

>> g

g =

21.2248 + 0.0000i

What we need though is to compare the results of the three functions and
check on the convergence as we iterate. This is where a tabular representation
of data can be particularly useful. We will use the m-file fixed point2.m.

function fixed_point2=fixed_point2(xguess);

% function: fixed_point

%

% find succesive approximations to f(x)= x-12*x^(1/3)+12

%

% Input: starting point for x in iterative scheme

% Output: table for different iteration functions g

23

%

n=10; % no. of iterations

% open a file

fid = fopen(’succ_approx.txt’, ’wt’);

% create a string to print it, both on the screen and into a file

line = sprintf(’%4s %15s %15s %15s %15s %15s %15s’, ’k’, ’g1’, ’f(g1)’, ...

’g2’, ’f(g2)’, ’g3’, ’f(g3)’);

disp(line); % print to screen

fprintf(fid, ’%s\n’, line); % print to file

% start the iteration

g1=xguess;

g2=xguess;

g3=xguess;

line = sprintf(’%4.0f %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f’, ...

0, g1,fx(g1), g2, fx(g2), g3, fx(g3));

disp(line);

fprintf(fid, ’%s\n’, line);

for k=1:n

g1=12*g1.^(1/3)-12;

g2=((g2+12)/12).^3;

g3=(8*g3^(1/3)-12)/(1-4*g3^(-2/3));

line = sprintf(’%4.0f %15.10f %15.10f %15.10f %15.10f %15.10f %15.10f’, ...

k, g1,fx(g1), g2, fx(g2), g3, fx(g3));

disp(line);

fprintf(fid, ’%s\n’, line);

end

fclose(fid);

end

function fx=fx(x)

% calculate the function given x

fx=x-12*x.^(1/3)+12;

end

We can now call the function fixed point from MATLAB prompt with an
argument of beginning guess for the root.

>> fixed_point2(1)
k g1 f(g1) g2 f(g2) g3 f(g3)

0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000
1 0.0000000000 12.0000000000 1.2714120370 0.2714120370 1.3333333333 0.1256243378

2 -12.0000000000 -13.7365709106 1.3527192196 0.0813071826 1.3879068816 0.0024040866
3 1.7365709106 -16.5904536662 1.3777341143 0.0250148947 1.3889923491 0.0000009093
4 18.3270245768 -3.5731664525 1.3854917428 0.0077576285 1.3889927600 0.0000000000

5 21.9001910293 -0.2023939369 1.3879034437 0.0024117008 1.3889927600 0.0000000000
6 22.1025849663 0.2916692093 1.3886537660 0.0007503223 1.3889927600 0.0000000000

7 21.8109157570 0.2477684464 1.3888872595 0.0002334935 1.3889927600 0.0000000000
8 21.5631473106 0.1532914641 1.3889599259 0.0000726664 1.3889927600 0.0000000000

9 21.4098558464 0.0862246673 1.3889825412 0.0000226153 1.3889927600 0.0000000000
10 21.3236311792 0.0466467994 1.3889895796 0.0000070384 1.3889927600 0.0000000000

In addition a file succ approx.txt is created which looks like the following:

>> type succ_approx.txt

24

k g1 f(g1) g2 f(g2) g3 f(g3)
0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000 1.0000000000

1 0.0000000000 12.0000000000 1.2714120370 0.2714120370 1.3333333333 0.1256243378
2 -12.0000000000 -13.7365709106 1.3527192196 0.0813071826 1.3879068816 0.0024040866

3 1.7365709106 -16.5904536662 1.3777341143 0.0250148947 1.3889923491 0.0000009093
4 18.3270245768 -3.5731664525 1.3854917428 0.0077576285 1.3889927600 0.0000000000

5 21.9001910293 -0.2023939369 1.3879034437 0.0024117008 1.3889927600 0.0000000000
6 22.1025849663 0.2916692093 1.3886537660 0.0007503223 1.3889927600 0.0000000000
7 21.8109157570 0.2477684464 1.3888872595 0.0002334935 1.3889927600 0.0000000000

8 21.5631473106 0.1532914641 1.3889599259 0.0000726664 1.3889927600 0.0000000000
9 21.4098558464 0.0862246673 1.3889825412 0.0000226153 1.3889927600 0.0000000000

10 21.3236311792 0.0466467994 1.3889895796 0.0000070384 1.3889927600 0.0000000000

It is now easy to see from the table that the function g3 converges very rapidly
to the lower root while g1 and g2 converge much slower to the higher and lower
roots respectively.

25

5 Programming with MATLAB

5.1 Using m-files

MATLAB provides a full programming language that enables you to write a
series of MATLAB statements into a file and then execute them with a single
command. You write your program in an ordinary text file, giving the file a
name of filename.m . The term you use for filename becomes the new command
that MATLAB associates with the program. The file extension of .m makes this
a MATLAB M-file.

M-files can be scripts that simply execute a series of MATLAB statements,
or they can be functions that also accept arguments and produce output. You
create M-files using a text editor, then use them as you would any other MAT-
LAB function or command.

The process looks as displayed in Figure 13.

Figure 13: Steps in using a m-file

What goes in a M-file?

function f = fact(n) % Function definition line

% FACT Factorial. % H1 line

% FACT(N) returns the factorial of N, H! % Help text

% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N).

f = prod(1:n); % Function body

return

This function has some elements that are common to all MATLAB functions:

• A function definition line. This line defines the function name, and the
number and order of input and output arguments.

• An H1 line. H1 stands for ”help 1” line. MATLAB displays the H1 line for
a function when you use lookfor or request help on an entire directory.

26

• Help text. MATLAB displays the help text entry together with the H1
line when you request help on a specific function.

• The function body. This part of the function contains code that performs
the actual computations and assigns values to any output arguments.

5.2 Scripts

Scripts are the simplest kind of M-file because they have no input or output
arguments. They’re useful for automating series of MATLAB commands, such
as computations that you have to perform repeatedly from the command line.
Scripts operate on existing data in the workspace, or they can create new data
on which to operate. Any variables that scripts create remain in the workspace
after the script finishes so you can use them for further computations.

The following demonstrates a simple script m-file. These statements calculate
ρ for several trigonometric functions of θ, then create a series of polar plots.

% An M-file script to produce % Comment lines

% "flower petal" plots

theta = -pi:0.01:pi; % Computations

rho(1,:) = 2 *sin(5 *theta).^2;

rho(2,:) = cos(10 *theta).^3;

rho(3,:) = sin(theta).^2;

rho(4,:) = 5 *cos(3.5 *theta).^3;

for k = 1:4

polar(theta,rho(k,:)) % Graphics output

pause

end

Try entering these commands in an M-file called petals.m. This file is now a
MATLAB script. Typing petals at the MATLAB command line executes the
statements in the script. In this case it will cycle through four plots. The pause
button will cause MATLAB to wait after drawing on figure for any key to be
pressed. After the script displays a plot, press Return to move to the next plot.
There are no input or output arguments; petals creates the variables it needs in
the MATLAB workspace. When execution completes, the variables (i,theta,
and rho) remain in the workspace. To see a listing of them, enter whos at
the command prompt. You can also see the variables listed in the workspace
window if you have that open. Note that if you click on the variable listed in
the workspace you open the Array editor which displays and allows you to edit
the variable array.

5.3 Functions

Functions are M-files that accept input arguments and return output arguments.
They operate on variables within their own workspace. This is separate from
the workspace you access at the MATLAB command prompt. This will be
explained in more detailed in the next section.

27

The average function shown below is a simple M-file that calculates the
average of the elements in a vector.

function y = myaverage(x)

% myaverage Mean of vector elements.

% myaverage(X), where X is a vector, is the mean of vector elements.

% Nonvector input results in an error.

[m,n] = size(x);

if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))

error(’Input must be a vector’)

end

y = sum(x)/length(x); % Actual computation

return

Enter these commands in an M-file called average.m . The average function
accepts a single input argument and returns a single output argument. To call
the average function, enter

>> x=1:99;

>> myaverage(x)

ans =

50

5.4 Program flow control

MATLAB has four basic flow control structures in programming: while, if, for,
and switch. Each of these control elements must have a matching end keyword
downstream in the program. Logic control structures are:

if/elseif/else

switch/case/otherwise

Iterative loop structures are:

for

while

An example of the if, elseif programming is as follows:

if i==j

A(i, j) = 2; % called only when i is equal to j

elseif abs(i-j)==1

A(i, j) = -1; % called only when i and j differ by 1

else

A(i, j) = 0; % all other situations

end

The above assigns a tri-diagonal matrix to A. Similarly, an example of switch
is:

28

switch algorithm % switch depending on the value of the variable "algorithm"

case ’ode23’

str = ’2nd/3rd order’;

case {’ode15s’, ’ode23s’}

str = ’stiff system’;

otherwise

str = ’other algorithm’;

end

Note that, unlike most other languages, there is no need for a break state-
ment. Also switch is more efficient than if when comparing string arguments.

A simple iterative loop using for is:

n=10;

for i=1:n

for j=1:n

a(i, j) = 1/(i+j-1);

end

end

Because MATLAB is designed to work with matrices it is possible to dra-
matically speed up a loop. It can become more readable in the process as well,
when done correctly. Following displays the traditional way of writing a loop
over a order m× n matrix:

mass = rand(5, 10000); length = rand(5, 10000);

width = rand(5, 10000); height = rand(5, 10000);

[m, n] = size(mass);

for i=1:m

for j=1:n

density(i, j) = mass(i, j) / (length(i, j)*width(i, j)*height(i, j));

end

end

Using MATLAB ”vector” notation the above piece of code becomes:

density = mass ./ (length .* width .* height);

29

6 MATLAB workspace and File I/O

6.1 MATLAB workspace

Note that as you work in the MATLAB command window, MATLAB remembers
your commands. You can always recall your previous commands using the up
arrow key. This is true of all the variables created through these commands as
well. For example:

>> x=-5:0.1:5;

>> sqr=x.^2;

>> sqrnorm = norm(sqr);

>> sqrnorm

sqrnorm =

114.6008

>> pl1=plot(x, sqr, ’r:s’);

>> sqrnorm

sqrnorm =

114.6008

The variable sqrnorm remained in the workspace. The keyword who recalls
the list of variables in the workspace.

>> who

Your variables are:

A i pl rho x xx1 z

ans j pl1 sqr x1 xx2

cub k pl2 theta x2 y

The keyword whos gives more detailed information about the workspace.

>> whos

Name Size Bytes Class

pl1 1x1 8 double array

sqr 1x101 808 double array

sqrnorm 1x1 8 double array

x 1x101 808 double array

Grand total is 204 elements using 1632 bytes

The keyword clear removes the variable from workspace. The command
clear all by itself clears the workspace of all variables. Use this command with
caution as there is no undo!

>> clear z

>> z

??? Undefined function or variable ’z’.

30

6.2 Function workspace

Script files (i.e., m-files with no functions) share its workspace with the base
workspace. However functions have their own workspace. So variables defined
within the function has no value outside the function. This is usually referred to
as encapsulation in programming parlance. This is a good thing that encourages
well designed programs that are readable and manageable. However, in case, it
is necessary for variables within a function workspace be available in the base
workspace, it is possible to use the global keyword. A related concept is the
persistent keyword which allows variables in a function workspace be available
in two different invocations of the function (although still not available in the
base workspace).

6.3 Native data files

The existing workspace data can be saved to a file using save. To save only some
variables to a specified file use save filename var1 var2. The code fragment below
demonstrates saving the workspace to a file called workspace (this produces a
binary file called workspace.mat in the working directory). You can then quit
MATLAB and restart it. Obviously now the workspace is empty. However it is
possible to load in the saved workspace using load as shown below.

>> save workspace

%-- 8/12/03 11:00 AM --% <-- quit MATLAB

>> load workspace <-- new MATLAB session

>> sqrnorm=norm(sqr) <-- sqr read in from saved workspace

sqrnorm =

114.6008

6.4 Data import and export

In addition to the native files format, MATLAB provides a large set of file I/O
functions.

>> help fileformats

Readable file formats.

Data formats Command Returns

MAT - MATLAB workspace load Variables in file.

CSV - Comma separated numbers csvread Double array.

DAT - Formatted text importdata Double array.

DLM - Delimited text dlmread Double array.

TAB - Tab separated text dlmread Double array.

Spreadsheet formats

XLS - Excel worksheet xlsread Double array and cell array.

WK1 - Lotus 123 worksheet wk1read Double array and cell array.

31

Scientific data formats

CDF - Common Data Format cdfread Cell array of CDF records

FITS - Flexible Image Transport System fitsread Primary or extension table data

HDF - Hierarchical Data Format hdfread HDF or HDF-EOS data set

Movie formats

AVI - Movie aviread MATLAB movie.

Image formats

TIFF - TIFF image imread Truecolor, grayscale or indexed image(s).

PNG - PNG image imread Truecolor, grayscale or indexed image.

HDF - HDF image imread Truecolor or indexed image(s).

BMP - BMP image imread Truecolor or indexed image.

JPEG - JPEG image imread Truecolor or grayscale image.

GIF - GIF image imread Indexed image.

PCX - PCX image imread Indexed image.

XWD - XWD image imread Indexed image.

CUR - Cursor image imread Indexed image.

ICO - Icon image imread Indexed image.

RAS - Sun raster image imread Truecolor or indexed.

PBM - PBM image imread Grayscale image.

PGM - PGM image imread Grayscale image.

PPM - PPM image imread Truecolor image.

Audio formats

AU - NeXT/Sun sound auread Sound data and sample rate.

SND - NeXT/Sun sound auread Sound data and sample rate.

WAV - Microsoft Wave sound wavread Sound data and sample rate.

It is also possible to do low-level file I/O using the standard, file open, write,
read and file close functions. The code fragment below demonstrates a trivial
use of these functions.

>> fid = fopen (’square_mat.txt’, ’wt’);

>> fprintf(fid, ’%s\n’, ’This is a square matrix’);

>> fprintf(fid, ’%i\t%i\t%i\n’, [1 2 3; 4 5 6; 7 8 9]’);

>> fclose(fid);

This produces a file square mat.txt in the current working directory which con-
tains:

This is a square matrix

1 2 3

4 5 6

7 8 9

32

7 Ordinary Differential Equations

7.1 Second order homogeneous linear equation with con-
stant coefficients

Consider the second order linear equation:

d2y

dx2
+ a

dy

dx
+ by = 0

where a and b are constants. This is second order because the largest derivative
of the dependant variable y is 2. It is homogeneous because the right hand side
is 0.

If we choose a solution of the form, y = exp(kx), where k = const then,

dy

dx
= k exp(kx),

d2y

dx2
= k2 exp(kx)

and for this to be a solution of the differential equation the auxiliary equation
k2 + ak + b = 0 must be true. This equation (in general) will have two complex
roots, k1 and k2.

k1 = −a/2 + 1/2
√

a2 − 4b

k2 = −a/2− 1/2
√

a2 − 4b

The general solution of the equation then is:

y(x) = C1 exp(k1x) + C2 exp(k2x)

Let us now add the initial conditions:

y(0) = d;
dy

dx

∣

∣

∣

∣

x=0

= g

Then, C1 +C2 = d and k1C1+k2C2 = g. Solving the simultaneous equation:

C1 + C2 = d
C1k1 + C2k2 = g

we get the constants

C1 = (g − dk2)/(k1 − k2)
C2 = (dk1 − g)/(k1 − k2)

In MATLAB we can use the symbolic package as following:

>> syms a b c d g k1 k2 y % declare variables as symbolic

>> k1=-(a/2)+1/2*sqrt(a^2-4*b);

>> k2=-(a/2)-1/2*sqrt(a^2-4*b);

>> y=(g-d*k2)/(k1-k2)*exp(k1*x)+(d*k1-g)/(k1-k2)*exp(k2*x);

33

In the special case:

a = 1 b = 1 d = 1 g = 0

we get:

>> a=1;

>> b=1;

>> d=1;

>> g=0;

>> pretty(eval(y))

1/2 1/2

(1/2 - 1/6 I 3) exp((- 1/2 + 1/2 I 3) x)

1/2 1/2

+ (1/2 + 1/6 I 3) exp((- 1/2 - 1/2 I 3) x)

>> x=0:0.1:6*pi;

>> g=-10;

>> y1=eval(y);

>> g=0;

>> y2=eval(y);

>> g=10;

>> y3=eval(y);

>> plot(x, y1, ’k-’, x, y2, ’k--’, x, y3, ’k-.’);

>> legend(’g=-10’, ’g=0’, ’g=10’);

>> xlabel(’x’);

>> ylabel(’y’);

>> title(’Damped oscillator’)

This produces the Figure 14 displaying the evolution of the function y. This
is exactly as expected, with the displacement y starting off at 1 at x = 0 and
the damping term (∝ dy/dx) bringing the displacement very rapidly down to
zero. Depending on the initial value of dy/dx at x = 0, the transient behaves
differently. In all three cases though this is a overdamped system, where the
damping rapidly brings the system to a stop.

It is also possible to use MATLAB’s own differential equation solver dsolve
to get the above solution almost trivially.

>> S=dsolve(’D2y+a*Dy+b*y=0’, ’y(0)=d, Dy(0)=g’);

>> t=x;

>> plot(x, eval(S), ’k-’, x, y3, ’kx’);

Note the line t=x; has to be there because dsolve returns its results in terms
of t and not x. As can be seen from Figure 15 the solution we had derived and
the result of dsolve are identical.

34

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

8
Damped oscillator

x

y

g=−10
g=0
g=10

Figure 14: Solution of the ordinary 2nd order homogeneous differential equation

7.2 Non-homogeneous 2nd order differential equations

We can now use dsolve to solve for a non-homogeneous 2nd order differential
equation. In particular we want to look at the equation:

d2y

dx2
+ a

dy

dx
+ by = c

with the same initial conditions as before:

y(0) = d;
dy

dx

∣

∣

∣

∣

x=0

= g

Then again using the symbolic math package in MATLAB:

>> syms a b c d g y

>> y=dsolve(’D2y+a*Dy+b*y=c’, ’y(0)=d, Dy(0)=g’, ’x’);

>> y

y =

1/2*exp((-1/2*a+1/2*(a^2-4*b)^(1/2))*x)*(-a*c+a*d*b-(a^2-4*b)^(1/2)*c+

(a^2-4*b)^(1/2)*d*b+2*g*b)/(a^2-4*b)^(1/2)/b+

1/2*exp((-1/2*a-1/2*(a^2-4*b)^(1/2))*x)*(a*c-a*d*b-(a^2-4*b)^(1/2)*c+

(a^2-4*b)^(1/2)*d*b-2*g*b)/(a^2-4*b)^(1/2)/b+1/b*c

Note the last argument x to the function dsolve. This tells MATLAB the
solution y should in terms of the explicit variable x instead of the default t.

35

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

Figure 15: Comparison of dsolve and the traditional method of solving

If we now look at the same special case:

>> a=1;

>> b=1;

>> c=1;

>> d=1;

>> x=0:0.1:6*pi;

>> g=-1;

>> y1=eval(y);

>> g=0;

>> y2=eval(y);

>> g=1;

>> y3=eval(y);

>> plot(x, y1, ’k-’, x, y2, ’k--’, x, y3, ’k-.’);

This gives us the Figure 16. As can be seen it is similar to the homogeneous
case. The exception is that because of the forcing constant on the right hand
side, the solution asymptotes to that constant rather than 0.

A simple way of quickly visualizing a solution from dsolve is the ezplot

function. The script below demonstrates the use of the ezplot function.

>> syms a b c d g y x

>> y=dsolve(’D2y+a*Dy+b*y=c’, ’y(0)=d, Dy(0)=g’, ’x’);

>> a=1;b=1;c=1;d=1;g=1;

36

0 2 4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 16: Solution of an inhomogeneous equation

>> ezplot(eval(y), [0, 6*pi]);

>> axis([-0.5 20. 0.8 1.6]);

This produces Figure 17.

37

0 2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x

exp((−1/2+1/2 i 31/2) x)/(8604408562923685/81129638414606681695789005144064+i 31/2)−...+1

Figure 17: Using the ezplot function

38

8 Sparse Matrices

8.1 Storage of data

Matrices and linear algebra are frequently a way in which to analyze complex
problems that can be framed in terms of partial differential equations. These
equations can then be discretized, using some scheme so the system can be
represented by discrete fields (instead of continuous fields). Discretizations of
partial differential equations almost always lead to sparse matrices. These are
matrices where most of the elements are zeros. Although it is still possible to
use the same algorithms for sparse as dense matrices (matrices with few zero
elements) it is very inefficient to do so. In particular some problems are so
large that to write out the entire matrix would require prohibitive amounts of
memory. It is therefore critical to take advantage of the sparseness of the matrix.

The first advantage that can be taken is in the storage of data. Normally
a matrix in MATLAB is stored by writing out every element. A sparse matrix
stores its data using three vectors. Only non-zero elements are stored. The
length of the three vectors is called nzmax. This must be greater than the
number of non-zero elements in the matrix. The first vector is just the list of
(nnz) non-zero elements. The second vector is the row index of the non-zero
elements. There are nzmax elements in this vector. The third vector is start
and end column index of non-zero elements in each row.

For example consider the matrix:









1 0 3 0
0 4 0 0
0 0 6 0
0 3 2 0









>> A=[1 0 3 0; 0 4 0 0; 0 0 6 0; 0 3 2 0];

>> A1=sparse(A);

>> A1

A1 =

(1,1) 1

(2,2) 4

(4,2) 3

(1,3) 3

(3,3) 6

(4,3) 2

>> whos

Name Size Bytes Class

A 4x4 128 double array

A1 4x4 92 double array (sparse)

Grand total is 22 elements using 220 bytes

>> nzmax(A1)

39

ans =

6

>> nnz(A1)

ans =

6

The reason for a possible difference between nzmax and nnz is efficiancy. It
is more efficient to allocate more space initially and allow the matrix to expand
to fill it than to allocate exactly what is needed. However the tradeoff with the
extra memory needed against the improved performance changes at some large
matrix size. In our tiny example nzmax and nnz are the same.

Note that if the matrix is complex, then there is a fourth vector which is the
list of imaginary numbers to store the matrix data.

8.2 Creating sparse matrices

We saw in the previous section sparse is one way of creating sparse matrices
from dense ones. But clearly this is not a very efficient way of creating sparse
matrices.

Another usage of sparse is to create the matrix from its member vectors.
For example for our our example matrix:

>> A2=sparse([1 2 4 1 3 4], [1 2 2 3 3 3], [1 4 3 3 6 2], 4, 4);

>> A2

A2 =

(1,1) 1

(2,2) 4

(4,2) 3

(1,3) 3

(3,3) 6

(4,3) 2

>> A3=sparse([1 2 4 1 3 4], [1 2 2 3 3 3], [1 4 3 3 6 2], 4, 4, 10);

>> A3

A3 =

(1,1) 1

(2,2) 4

(4,2) 3

(1,3) 3

(3,3) 6

(4,3) 2

>> nzmax(A2)

ans =

6

>> nzmax(A3)

ans =

40

10

>> nnz(A2)

ans =

6

>> nnz(A3)

ans =

6

The second usage of sparse sets nzmax to 10 instead of the default 6 (the number
of non-zero elements). This would be useful if we were to grow the number of
non-zero elements in A3.

Another way of creating sparse matrices is to use the spdiags which uses the
Compressed-Diagonal storage mode. A matrix of order n has 2n− 1 diagonals.

A =

d−1

d−2

d−3

...
d1−n

d0 d1 d2 d3 · · · dn−1














a11 a12 a13

a21 a22 a23

a31 a32 a33

. . . a1n

...
. . .

...
an1 . . . ann















The matrix A can then stored using two matrices B and d, such that each
diagonal (including its zero elements) of A that has at least one non-zero element
is a column of B. These columns are padded such that:

• Each superdiagonal (k > 0) which has n − k elements, is padded with k
leading zeros.

• The main diagonal (which has n elements), isn’t padded.

• Each subdiagonal (k < 0), which has n − |k| elements, is padded with k
trailing zeros.

And d is a vector with the list of the diagonal numbers corresponding to the
columns of B.

For example for a matrix A,

A =









1 0 3 0
0 4 0 0
0 0 6 0
0 3 2 0









we have

B =









0 0 1 0
3 0 4 0
0 2 6 3
0 0 0 0









and
d =

[

−2 −1 0 2
]

So we can construct our matrix A using:

41

>> B=[0 0 1 0; 3 0 4 0; 0 2 6 3; 0 0 0 0];

>> d=[-2 -1 0 2];

>> A2=spdiags(B, d, 4, 4)

A2 =

(1,1) 1

(2,2) 4

(4,2) 3

(1,3) 3

(3,3) 6

(4,3) 2

Some of the built in functions to create dense matrices, like, rand, eye etc.
have their sparse equivalents.

rand(m, n) ⇒ sprand(m, n)

eye(m, n) ⇒ speye(m, n)

zeros(m, n) ⇒ sparse(m, n)

There is no equivalent (for obvious reasons) of ones that produces a sparse
matrix. However there is a function spones which takes a sparse matrix as an
argument and preserves its structure, but replaces each non-zero element with
1.

In addition there is the command spconvert that will use load to read in
data (in row, column index and value format) and convert it to a sparse matrix.

8.3 Viewing sparse matrices

MATLAB has a script spy to graphically view sparse matrices. For example
spy(A2) produces the Figure 18. This isn’t a very interesting picture. If we use
spy to look at more interesting matrices we can see patterns emerge.

For example Figure 19 shows a matrix that comes with MATLAB.
A particularly useful function is find. This returns the list of indices and

value of all non-zero elements of a matrix, regardless whether the matrix a dense
or sparse. For example:

>> [i, j, v]=find(A2)

i =

1

2

4

1

3

4

j =

42

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nz = 6

Figure 18: Viewing a sparse matrix graphically

1

2

2

3

3

3

v =

1

4

3

3

6

2

43

0 50 100 150 200 250 300 350 400 450

0

50

100

150

200

250

300

350

400

450

nz = 1887

Figure 19: Viewing a large sparse matrix graphically

8.4 Sparse matrix computations

A sparse matrix may stop being a sparse matrix when operated on if it is not
possible to preserve sparsity in that operation. This can potentially produce a
very large matrix inadvertantly, so it is important to keep this in mind when
operating on a sparse matrix. Functions that act on matrices and return a
vector or a scalar return a dense matrix regardless if the original matrix was a
sparse or dense. Note, the original matrix is unaffected.

Most unary operations (operations not involving a second matrix) preserve
the sparsity of the matrix. For example max(A) is a sparse matrix if A is a sparse
matrix. Obviously, the functions sparse and full change the sparsity of the
matrix.

Binary operations (operations between two matrices) preserves the sparsity
of the matrix if possible. So A.*B is sparse if either A or B are sparse. But A+B
is dense if one of the two A or B are dense.

44

8.5 Reordering of matrices

The simple way of reordering a matrix is to use the permutation vector. That
is the vector that lists the new ordering of the rows or columns of the matrix.
Using our matrix A2 from before:

>> full(A2)

ans =

1 0 3 0

0 4 0 0

0 0 6 0

0 3 2 0

>> p=[4 2 3 1];

>> A2(p,:)

ans =

(4,1) 1

(1,2) 3

(2,2) 4

(1,3) 2

(3,3) 6

(4,3) 3

>> full(A2(p,:))

ans =

0 3 2 0

0 4 0 0

0 0 6 0

1 0 3 0

It is also possible to use a permutation matrix to represent the permutation.
It is possible to convince oneself that the permutation matrix P is simply I(p,:)

where I is the identity matrix.

>> I=eye(4,4);

>> P=I(p,:);

>> full(P*A2)

ans =

0 3 2 0

0 4 0 0

0 0 6 0

1 0 3 0

A particularly useful function is colperm which returns a permutation vec-
tor such that on permutation the matrix has its column ordered in increasing
number of non-zero elements.

Some other ordering functions are symrcm, symamd and symmmd that work
on symmetric matrices and colamd and colmmd that work on non-symmetric
matrices.

45

9 Numerical solutions of Ordinary Differential
Equations

Consider a second order differential equation:

d2y

dx2
+ a(x)

dy

dx
+ b(x)y = c(x)

where a and b are functions of x. This is second order because the largest
derivative of the dependant variable y is 2.

This can be written as two coupled first order differential equations:

dy

dx
= z

dz

dx
+ a(x)z + b(x)y = c(x)

We can then focus, momentarily, on a single first order ODE.

dy

dx
= f(x, y)

To the simplest approximation a solution would be the Euler’s approxima-
tion:

yn+1 = yn + hf(xn, yn)

This is exact if y(x) is linear in x. In most other cases however this yields pretty
poor results. In addition this method can become unstable, i.e., small errors
would accumulate and result in a final yn very different from the actual y(xn).
An improvement to it is the Runge-Kutta 2nd order method:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

yn+1 = yn + k2 + O(h3)

where O(h3) refers to terms of order x3. Effectively, this introduces an inter-
mediat step in the Euler’s method in order to refine our guess of the change of
y with x.

It is possible to generalize this to n orders as:

k1 = hf(xn, yn)

k2 = hf(xn + a2h, yn + b21k1)

. . .

km = hf(xn + anh, yn + bm1k1 + bm2k2 + · · ·+ bm(m−1)km−1)

yn+1 = yn + c1k1 + c2k2 + · · ·+ cmkm + O(hm) (1)

46

A particularly useful aspect of this method is that a different choice of constants
ci results in a different order approximation to y:

y∗

n+1 = yn + c∗1k1 + c∗2k2 + · · ·+ c∗mkm + O(hm−1)

It is thus possible to get an error estimate for yn+1 without extra evaluations
of the function f(x, y):

∆ ≡ yn+1 − y∗

n+1 = σm
i=1(ci − c∗i)ki

The popular versions of these Runge-Kutta approximate solutions are, (4)5
and (2)3. MATLAB implements both these forms, as ode45 and ode23 respec-
tively. In either of these functions MATLAB uses the error estimate to modify
the step size.

Note that both these are for non-stiff ODE’s, where non-stiff means the dif-
ferential equations have solutions that have a single “timescale” (or at least mul-
tiple “timescales” are are not very different from each other). Here “timescale”
refers to the scale of the independant variable x over which y changes signifi-
cantly.

The function ode45 solves a differential equation of the form:

dyi

dt
= fi(y1, y2, . . . , yn) i = 1, 2, . . . , n

over the interval t0 ≤ t ≤ tf subject to the initial conditions yj(t0) = aj , j =
1, 2, ..., n, where aj are constants. The usage of the ode45 are as follows:

[t, y] = ode45(@FunctionName, [t0 tf], [a1 a2 ... an]’, ...

options, p1, p2, ...)

In the above [t, y] denotes that ode45 returns two results. The first t

is a column vector of the times in the range [t0 tf] that are determined by
ode45 and the second output y is the matrix of solutions such that the rows
are the solutions at any given time t(i) in the corresponding row of the first
output t. Also, @FunctionName is the handle for the name of the function file
FunctionName (ignoring the .m at the end of the file) that represents the array
of functions which form the right hand side of the equations. Its form must be:
function y=FunctionName(t, g, p1, p2, ...) where t is the independant
variable, g is the vector representing yj , and p1, p2 etc. are parameters.

Consider the following second order ordinary differential equation, which
could represent a forced damped oscillator.

d2y

dt2
+ 2ξ

dy

dt
+ y = h(t)

Let us now make the substitution,

y1 = y

y2 =
dy

dt

47

Then the second order equation can be replaced by two first order equations.

dy1

dt
= y2

dy2

dt
= −2ξy2 − y1 + h(t)

Assume that ξ = 0.15 and that we start at time t0 = 0 and end at tf = 35.
At t0 the displacement and the velocity are both zero, viz. y1(t0) = 0 and
y2(t0) = 0. Finally we assume h(t) = 1.

Figure 20: Matlab’s built in editor

First create the function which returns the array of right hand side functions
(in this case a two element column vector.

function y=ForcingFunction(t, w, xi)

% ForcingFunction - return the right hand side of the system

% ForcingFunction takes in the time t, vector w, and the constant xi. The

% vector w gives the values of the dependant variable at the current time.

y = [w(2); -2*xi*w(2)-w(1)+1];

return

save this as a file ForcingFunction.m. This file may be created using MATLAB’s
own editor as displayed in the Figure 20.

Then run the following commands:

>> [tt, yy] = ode45(@ForcingFunction, [0 35], [0 0]’, [], 0.15);

>> plot(tt, yy(:, 1))

>> xlabel(’Time’);

>> ylabel(’y(Time)’);

48

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

y(
T

im
e)

Figure 21: Solution of the differential system

You should get the Figure 21 displaying the displacement y(t) of the oscil-
lator with time t. As expected, the asymptotic value is the forcing value of 1,
and the oscillator displays a transient with a damping related to the constant.

49

10 SIMULINK

SIMULINK is an extension to MATLAB which uses a icon-driven interface for
the construction of a block diagram representation of a process. A block diagram
is simply a graphical representation of a process (which is composed of an input,
the system, and an output).

Typically, the MATLAB m-file ode45 is used to solve sets of linear and
nonlinear ordinary differential equations. The “traditional” numerical methods
approach is used, e.g. supply the equations to be solved in a function file, and
use a general purpose equation solver (linear or nonlinear algebraic, linear or
nonlinear differential equation, etc.) which “calls” the supplied function file to
obtain the solution. One of the reasons why MATLAB is relatively easy to use
is that the “equation solvers” are supplied for us, and we access these through
a command line interface (CLI). However, SIMULINK uses a graphical user
interface (GUI) for solving process simulations. Instead of writing MATLAB
code, we simply connect the necessary “icons” together to construct the block
diagram. The “icons” represent possible inputs to the system, parts of the
systems, or outputs of the system. SIMULINK allows the user to easily simulate
systems of linear and nonlinear ordinary differential equations. Many of the
features of SIMULINK are user-friendly due to the icon-driven interface, yet it
is important to spend some time experimenting with SIMULINK and its many
features.

10.1 Getting Started in Simulink

SIMULINK is an icon-driven state of the art dynamic simulation package that
allows the user to specify a block diagram representation of a dynamic process.
Assorted sections of the block diagram are represented by icons which are avail-
able via various “windows” that the user opens (through double clicking on the
icon). The block diagram is composed of icons representing different sections of
the process (inputs, state-space models, transfer functions, outputs, etc.) and
connections between the icons (which are made by “drawing” a line connecting
the icons). Once the block diagram is “built”, one has to specify the parameters
in the various blocks, for example the gain of a transfer function. Once these
parameters are specified, then the user has to set the integration method (of the
dynamic equations), stepsize, start and end times of the integration, etc. in the
simulation menu of the block diagram window.

In order to use SIMULINK start a MATLAB session (click on the MATLAB
button). Once MATLAB has started up, type simulink (SMALL LETTERS!) at
the MATLAB prompt (>>) followed by a carriage return (press the return key).
A SIMULINK window should appear shortly, with the several icons: Sources,
Sinks, Discrete, etc. This is shown in the Figure 22.

Next, go to the file menu in this window and choose New in order to begin
building the block diagram representation of the system of interest.

50

Figure 22: The SIMULINK library

10.2 Block Diagram Construction

As mentioned previously, the block diagram representation of the system is
made up of various type of icons. Basically, one has to specify the model of
the system (state space, discrete, transfer functions, nonlinear ODE’s, etc), the
input (source) to the system, and where the output (sink) of the simulation of
the system will go. Open up the Sources, Sinks, and Linear windows by clicking
on the appropriate icons. Note the different types of sources (step function,
sinusoidal, white noise, etc.), sinks (scope, file, workspace), and linear systems
(transfer function, state space model, etc.).

Let us illustrate this by trying to model a simple harmonic oscillator (a
pendulum). The equation of motion of the pendulum is:

ml2
d2θ

dt2
+ γ

dθ

dt
+ mgl sin θ = Af(ωDt)

In order to represent this as a block diagram, re-write the equation of motion
in the following way:

d2θ

dt2
= Af(ωDt)− γ

ml2
dθ

dt
− g

l
sin θ

θ =

∫ ∫
[

Af(ωDt)− γ

ml2
dθ

dt
− g

l
sin θ

]

In the above
∫

is the integration operator. For our example we will consider
the case where the forcing function Af(ωDt) = sin(t), i.e., A = 1, ωD = 1 and
f(ωDt) = sin(ωDt). In addition we will take the case where m = 1, γ = 10 and
l = 1. In S.I. g = 9.81kgm/s2.

Let us now try to construct this system using Simulink. Following the in-
structions given before start a new block diagram.

51

1
s

velocity

1
s

theta

theta

Output

9.81

Frequency

Forcing
Function

10

Damping

Figure 23: The SIMULINK model of a simple pendulum

1. On the MATLAB prompt (>>) type simulink.

2. Once the Library: simulink window is up click on File and then New

and select Model.

3. Double click on Sources. This opens a list of sources.

4. Click on the Sine wave block and drag it to the new model window.

5. Double click on the Sine wave block. A new window pops up display-
ing the parameters controlling the block. Make sure that the Amplitude

is 1 and the Frequency is set to 1 (according to the parameters of our
problem). This is the forcing function on the pendulum.

6. Next double click on the Continuous icon in the library window. Drag an
integrator to your model. Repeat this, as our solution has two integrations.

7. Double click on the Math Operations icon and drag two Gain and one
Sum icon to the model.

8. Double click the Sum block and change the shape to rectangular. In the
signs box enter +|-|-. This means there will be three inputs and one
output. The second two inputs are to be subtracted from the first input.

9. Double click on the Gain blocks and put in the correct multiplicative
factors.

10. Finally double click on the Sinks icon and drag a To workspace icon to
the model.

11. All the required blocks are now in, and we can connect them into a system.

52

12. To connect blocks click on the source block, and click on the destination
block while pressing the ctrl key. In order to branch bring the mouse to
the path that will be branched. Then keeping the ctrl key pressed click
and drag the mouse to the destination block.

13. Connect the blocks as shown in the Figure 23.

14. Double click on the To workspace block and name the variable (say,
theta). Choose the save format as Array.

15. Now click on the Simulation tab on the top of the model window and
select Simulation parameters. Select the Solver tab and set the Stop

time to be 30. Select the Workspace I/O tab and uncheck everything
but the Time button. Leave the variable name as tout. Uncheck the
Limit data point to last: button.

Now you can run the system, but clicking Simulation and selecting Start.
Now if you go back to the MATLAB prompt you will find that the new variables
tout and theta are now in the workspace. Plotting these two gives us the
evolution of the pendulum over time.

10.3 General Simulink Tips

The following are general tips and should be used often:

1. In order to save your work, select Save from the file menu and give the file
that you want to save a name (or choose an old name if you are “writing
over” an old version), and click the ok button (using the left-most mouse
button). Realize that you have a choice of the “folder” that the file is
saved in.

2. The results of a simulation can be sent to the MATLAB window by the use
of the to workspace icon from the Sinks window. Open the to workspace
icon and select the variable name that you want the results stored in the
MATLAB workspace.

3. If your simulation has n state (or output) variables and you want to save
them as different names, then you have to use a special connection called
a Demux (as in demultiplexer) icon which is found in the Signal Routing

window. Basically, it takes a vector input and converts it into several
scalar lines. You can set the number of outputs (scalar lines) by double
clicking on the icon and changing the number of outputs. A Mux icon takes
several scalar inputs and multiplexes those in a vector (useful sometimes
in transferring the results of a simulation to the MATLAB workspace, for
example).

4. You can add steady state constants to variables using a Constant icon in
the Sources window. To do this for a scalar output variable, just enter
the value of the steady-state into the Constant icon and add this to the

53

scalar output using the Sum icon. For a vector output, you must first
“break-up” the vector into scalar outputs using the Demux icon and then
add the steady-state value to each scalar output.

5. Parameters can be “passed” to SIMULINK from the MATLAB window by
using the parameter in a SIMULINK block or parameter box and defining
the parameter in the MATLAB window. For example, say that one wants
to run the simulation with many different damping constants γ, just re-
write the constant in the Gain block as gamma. Then make sure that you
define the variable gamma in MATLAB to some constant. Now run the
simulation. If you do not take the last step and gamma is undefined, the
simulation will stop with an error on the Gain block using gamma.

6. In order to print the block diagram, first save the block diagram. Then
click File and select Print.

10.4 More information

For more information on SIMULINK, please click Help in the top of the model
window and select Using Simulink

54

