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jmplicitly assumed that Ao can always be chosen equal to 1; yet without
regularity, it may be necessary to choose Ay = 0. As an example, consider

T
max / udt
0

subject to x =u?, x(0)=x(T)= 0.
In this problem, # = 0, 0 < ¢t < 7, is the only feasible control. Writing
H=u+ N2,

we have
H,=1+2Mu=0.

which is not satisfied by u = 0. The correct version is
H = Nu + N2,
$0
H, =N+ 2M = 0.

A choice of Ay = 0 and u = 0 does satisfy this condition. We shall implicitly
assume in the following that we can optimally choose Ay = 1. See also Section
14 for a more complete treatment.

Example 1. We solve our production planning problem by optimal control.
Let u(?) be the production rate and x(¢), the inventory level:

T
min / (c;u® + ¢, x) dt (11)
0

subjectto  x'(t) = u(z), x(0)=0, x(T)=B, u(t)=0. (12)

The initial state (inventory level) is zero and is supposed to reach B by time T.
Inventory holding cost accrues at ¢, per unit and production cost increases
with the square of the production rate. We form the Hamiltonian:
H=cu® + c,x + Nu.
Then
0H/0u =2ciu + A= 0, (13)
N=-3dH/dx= —c,. (14)
To find x, u, A that satisfy (12)-(14), integrate (14) to get N and substitute

into (13). Then put u into (12) and integrate. The two constants of integration
are found using the boundary conditions, yielding

x(t) = c,t(t — T)/dc, + Bt T,
u(t) = c,(2¢t — T)/4c, + B/ T,
Nt) =¢,T/2 - 2¢,B/T — ¢,t,

solong as # = 0 for 0 =< ¢ < T. This is the solution obtained by the calculus
of variations, as it should be. -
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Section 10

Bounded Controls

The control may be bounded, as in

t
max / lf(z‘,x, u) dt (1)
Io
subjectto  x' =g(¢, x,u), x(t,) = x,, (2)
asus<hbh. (3)

Absence of a bound is a special case with either ¢ & —c or b — oo, as
appropriate. For instance, gross investment may be required to be nonnegative.

Let J denote the value of the integral in (1). After appending (2) with a
multiplier and integrating by parts, one can compute the variation &.J, the
linear part of J — J*. :

87 = ["[(fet Nget M) 0x + (4 Ngi) o] dt = Nay) ox(1). (4)

Choose A td satisfy

N=-(fe+hg), Ny)=0, (5)
so that (4) reduces to
t
57 = / \(f. + Ag,) dudt. @)
fo

In order for x, u, \ to provide an optimal solution, no comparison path can
yield a larger value to the objective. Thus,

!
5J = / (fu + Ngy) dudt <0 (6)
)
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is required for all feasible modifications 6u. Feasible modifications are those
that maintain (3). If the optimal control is at its lower bound « at some ¢, then
the modified control ¢ + du can be no less than a for feasibility, so éu = 0 is
required. Similarly, if the optimal control is at its upper bound b, then any
feasible modification satisfies 6# < 0. Summarizing,

u=o0 whenever u = a,
u=so0 whenever u = b,
8u = unrestricted ~ whenever a < u < b. (7)

We need (6) to be satisfied for all du consistent with (7). Therefore, u will
be chosen so that

u(t) =a onlyif f,+Ng, =<0 at i,
a<u(t)<b onlyif f,+Ng, =0 at t,
u(t) =b onlyif f,+Ng,=0 at t. (8)

For instance, if u*(¢f) = a, then (from (7)) éu = 0 is required, and thus
(fy+Ng,)ou=<0 only if f,+ Ag,=<0. Similarly, if u*(t) = b, then
6u =< 0 is required for a feasible modification and thus (f, + A\g,)6u =<0
only if f, + Ag, = 0. And, as usual, if @ < u*(#) < b, then éu may have
any sign so that (f,, + \g,) 6u < 0 can be assured only if f, + Ag, = Oat ¢.
A statement equivalent to (8) is

J.+Ng, <0  implies u(t) =a,

S.+hg,=0  implies a=<u(t)<b,

f.+ Mg, >0  implies u(¢) =b. (8)

Thus, if x*, u* solve (1)-(3), then there must be a function A such that

x*, u*, \ satisfy (2), (3), (5), and (8). These necessary conditions can be
generated by means of the Hamiltonian

H=f(t,x,u) +N\g(t, x, u).
Then (2) and (5) result from
x' = dH/aN\, N =—-3H/dx.
Conditions (8) can be generated by maximizing H subject to (3); this is an

ordinary nonlinear programming problem in u.
Solve

max H=f+Ag ©)
subject to asu=<b
by appending the constraints to the objective with multipliers w,;, w,. The
Lagrangian for (9) is (see Section A6)

L=f(t, x,u) + Ne(t, x,u) + wi(b—u) +w,(u—a), (10)
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from which we obtain the necessary conditions for a constrained maximum
with respect to u:

oL /du = f,+Ng, — w; +w, =0, (11)
w, =20, w(b—-u)=0, (12)
w, =0, wy(u—a)=0. (13)

Conditions (11)-(13) are equivalent to conditions (8) and constitute an
alternative statement of the requirement, as will be shown in Exercise 6. (If
u*(t) = a, then b — u* > 0, so (12) requires w, = 0; hence, from an,
f, + Ng, + w,=0. Since w, =0, we have f, + \g, =0 if u*(¢) = a.
This is the first instance in (8). One continues similarly for the other two
possibilities.)

Example 1. We solved our production planning problem
T
min / (c,u? + ¢, x) dt
0

subjectto  x' =u, x(0)=0, x(T)=B, u(t)=0

in Section 6 and elsewhere in the case of B = ¢, T2 J4c,. If B < ¢,T?[4c,,
that plan is not feasible and explicit account must be taken of the nonnegativity
constraint # = 0. We now discuss this case.

This control #(t) is to be chosen at each f to minimize the Hamiltonian

H=cu?+ c;x + Mu, subjectto u = 0.
The Lagrangian, with multiplier function w, is
L =ct + c;x + Nt — wu.

Necessary conditions for # to be minimizing (see Exercise 1) are

oL /ou=2cu+N—-w=0, (14)
w=0, u=0, wu=0. (15)

Further,

N =-3dH/dx = —¢,,
so that

N2) = ko — 5t (16)
for some constant k,. Substituting from (16) into (14) and rearranging gives
u(t) = (w = N/2¢, = (et — ko + w)/2¢;. (17)

To solve, we make a conjecture about the structure of thevsolution and then
seek a path with this structure satisfying the conditions. Since the time span T’




188 Part II. Optimal Control

is long relative to the amount B to be produced, we guess that there is an
initial period, say 0 < ¢ < t* (for some t* to be determined), with no
production or inventory. Production begins at #*. Thus our hypothesis is

u(t)=0, O=st<t*,
u(?) >0, t*=t=<T, (18)

for some #* to be determined.
When u(t) = 0, we have from (17)

w(t) =ky—c,t =0, 0=t<t¥ (19)

Nonnegativity in (19) is required by (15). From (19), w(#) decreases on
0 < ¢ < t*, so nonnegativity is assured provided

ky — c,t* = 0. (20)
When u(t) > 0, (15) implies w(¢) = 0. Then from (17)
u(t) = (et — ko) /2¢, 20, t*=t=<T. (21)

Since u(#) increases after t*, u(¢) = 0 for t* < t < T provided that u(t*) =
(cyt* — kg)/2¢, = 0. This requirement and (20) together imply that

ko = cyt*. (22)
Hypothesis (18) now takes the more concrete form
u(t) =0, O0=iz<t¥,
u(t) = c,(t — t*)/2¢,, t*=st=<T. (23)
Recalling that # = X’ and integrating yields
x(#) =0, O0=t<1t¥,
x(t) = ¢, (t — t*)*Jae,, tF=t=<T. (24)

The constants of integration were evaluated using the final condition x(0) = 0
and the required continuity of x (so x(¢*) = 0). Finally, combining (24) with
the terminal condition x(7") = B gives

=T - 2(c,B/c,)"”. (25)

With a distant delivery date 7', the duration of the production period T — ¥
varies directly with ¢, B/c,; it increases with the amount to be produced and
the production cost coefficient ¢, and decreases with the unit holding cost ¢3-
It is precisely the period obtained under the supposition that production had t0
begin immediately but that the delivery date T could be chosen optimally; see
Example 19.1.
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u(t)

truncated (26)

. optimal

/ ty * t, T t
BIT— ¢3T/4c,

Figure 10.1

In sum, the solution is given in the accompanying table, where #* is given
by (25). Extending our sufficiency theorem to cover a constrained control
region shows the solution tabulated to be optimal (see Section 15).

0=<t<t* tf=<t=<T
u(t) 0 o, (t — 1% /2¢,
x(1) ' 0 o, (t — t%? Jdc,
NE) c,(1* — 1) o(t* -1
w() o,(t* — 1) 0

Observe that the solution could #nof be obtained by taking the solution to the
unconstrained problem

u(t) = c,(2t — T)/4e, + B/T (26)

and deleting the nonfeasible portion! Taking this solution, appropriate only if
B = ¢,T? /4c,, and setting u = O whenever it dictates # < 0 does not provide
the optimal solution. This is algebraically clear and is also illustrated graphi-
cally in Figure 10.1 where ¢, = T/2 — 2¢,B/c,T, t, =2t, =T —
4c,B/c,t, and t* is given in (25).

In Figure 10.1, the ‘‘solution’’ (26) begins with © < 0 and reaches u = 0 at
t,. Since output is negative for 0 < ¢ < ¢, inventory is likewise negative.
Production from ¢, until #, is devoted to driving inventory back up to zero!
Production from ¢, until T fulfills the total delivery requirement B. If
production were to begin at.#, and follow the truncated path, a total of B
would be produced but costs would be needlessly high. The cost minimizing
plan is reflected in the optimal path.




