re evaluated along (t, x^*, u^*) . Define

$$\delta u = u - u^*. \tag{6}$$

u is called the first variation of J and is

$$\lambda \delta x + (f_u + \lambda g_u) \delta u dt.$$
 (7)

vas derived earlier by a slightly different re flexible. It provides the first variation ce in functional values) even when a tions may be difficult to construct.

then no modification of that policy (say to before, we choose λ to satisfy

$$(x^*) + \lambda(t) g_x(t, x^*, u^*),$$
 (8)

3 zero. Then we need

$$+ \lambda g_u(t, x^*, u^*)] \delta u \, dt \le 0 \tag{9}$$

1 of the control δu . (Recall that δJ is the 1e maximum.) Note that feasibility now responding modified state variable termi-

ection that, if there is a feasible control u to $x(t_1) = x_1$, then the coefficient of δu

$$\lambda g_u(t, x^*, u^*) = 0 {10}$$

are optimal for (1)–(3), then there is a aneously satisfy (2), (3), (8), and (10), espect to u at each t. Note that there is value x_1 provides the needed conditionar obvious, since δu cannot be chosen control must be feasible; it must drive the sity of (10) in the present case can be ruction, as shown in the appendix to this stimal but does not satisfy (10). Then we δu that is feasible and that improves J ity and completes the demonstration of

ertain regularity conditions hold; other-A full statement of necessary conditions h f that may be either 0 or 1. We have

implicitly assumed that λ_0 can always be chosen equal to 1; yet without regularity, it may be necessary to choose $\lambda_0 = 0$. As an example, consider

$$\max \int_0^T u \, dt$$

subject to $x' = u^2$, $x(0) = x(T) = 0$.

In this problem, u = 0, $0 \le t \le T$, is the *only* feasible control. Writing

$$H = u + \lambda u^2$$

we have

$$H_u = 1 + 2\lambda u = 0.$$

which is not satisfied by u = 0. The correct version is

$$H=\lambda_0 u+\lambda u^2,$$

SO

$$H_u = \lambda_0 + 2\lambda u = 0.$$

A choice of $\lambda_0 = 0$ and u = 0 does satisfy this condition. We shall implicitly assume in the following that we can optimally choose $\lambda_0 = 1$. See also Section 14 for a more complete treatment.

Example 1. We solve our production planning problem by optimal control. Let u(t) be the production rate and x(t), the inventory level:

$$\min \int_0^T (c_1 u^2 + c_2 x) dt$$
 (11)

subject to
$$x'(t) = u(t), x(0) = 0, x(T) = B, u(t) \ge 0.$$
 (12)

The initial state (inventory level) is zero and is supposed to reach B by time T. Inventory holding cost accrues at c_2 per unit and production cost increases with the square of the production rate. We form the Hamiltonian:

$$H = c_1 u^2 + c_2 x + \lambda u.$$

Then

$$\partial H/\partial u = 2c_1 u + \lambda = 0, \tag{13}$$

$$X = -\partial H/\partial x = -c_2. \tag{14}$$

To find x, u, λ that satisfy (12)-(14), integrate (14) to get λ and substitute into (13). Then put u into (12) and integrate. The two constants of integration are found using the boundary conditions, yielding

$$x(t) = c_2 t(t - T)/4c_1 + Bt/T,$$

$$u(t) = c_2(2t - T)/4c_1 + B/T,$$

$$\lambda(t) = c_2 T/2 - 2c_1 B/T - c_2 t,$$

so long as $u \ge 0$ for $0 \le t \le T$. This is the solution obtained by the calculus of variations, as it should be.

satisfy

$$m'=(r-1)m.$$

the system in a. is (0,0) and it is totally

$$= x_0 e^t, \qquad m(t) = 0, \qquad J = 0$$

Gould. Exercise 2 is discussed in detail by lolin Clark, whereas Exercise 5 is discussed

imal solution in the neighborhood of a steady is more than one state variable. The class of

$$=u, \quad x(0)=x_0,$$

 u_n] and F is a twice differentiable concave idied by means of a linear approximation in pari and Liviatan have shown that if F is if m_i is a root of the characteristic equation, ability is impossible; if the real part of m_i is nnot be negative. Further, they have shown on there are no purely imaginary roots. See

f an equilibrium. Under what conditions will icular equilibrium regardless of the initial Ieal for an extensive analysis of a particular ick (1977) for a survey of results on global Magill (1977a, b), Cass and Shell, Brock and n (1978) for representative papers on stabil-

ncept and of the existence and properties of e been addressed by Halkin (1974), Haurie howed that in general there are no necessary horizon problem. See also Seierstad and

Section 10

Bounded Controls

The control may be bounded, as in

$$\max \int_{t_0}^{t_1} f(t, x, u) dt$$
 (1)

subject to
$$x' = g(t, x, u), x(t_0) = x_0,$$
 (2)

$$a \le u \le b. \tag{3}$$

Absence of a bound is a special case with either $a \to -\infty$ or $b \to \infty$, as appropriate. For instance, gross investment may be required to be nonnegative.

Let J denote the value of the integral in (1). After appending (2) with a multiplier and integrating by parts, one can compute the variation δJ , the linear part of $J - J^*$.

$$\delta J = \int_{t_0}^{t_1} \left[\left(f_x + \lambda g_x + \lambda' \right) \delta x + \left(f_u + \lambda g_u \right) \delta u \right] dt - \lambda(t_1) \delta x(t_1). \tag{4}$$

Choose \(\lambda\) to satisfy

$$\lambda' = -(f_x + \lambda g_x), \qquad \lambda(t_1) = 0, \tag{5}$$

so that (4) reduces to

$$\delta J = \int_{t_0}^{t_1} (f_u + \lambda g_u) \, \delta u \, dt. \tag{4'}$$

In order for x, u, λ to provide an optimal solution, no comparison path can yield a larger value to the objective. Thus,

$$\delta J = \int_{t_0}^{t_1} (f_u + \lambda g_u) \, \delta u \, dt \le 0 \tag{6}$$

is required for all feasible modifications δu . Feasible modifications are those that maintain (3). If the optimal control is at its lower bound a at some t, then the modified control $a + \delta u$ can be no less than a for feasibility, so $\delta u \ge 0$ is required. Similarly, if the optimal control is at its upper bound b, then any feasible modification satisfies $\delta u \le 0$. Summarizing,

$$\delta u \ge 0$$
 whenever $u = a$,
 $\delta u \le 0$ whenever $u = b$,
 $\delta u = \text{unrestricted}$ whenever $a < u < b$. (7)

We need (6) to be satisfied for all δu consistent with (7). Therefore, u will be chosen so that

$$u(t) = a$$
 only if $f_u + \lambda g_u \le 0$ at t ,
 $a < u(t) < b$ only if $f_u + \lambda g_u = 0$ at t ,
 $u(t) = b$ only if $f_u + \lambda g_u \ge 0$ at t . (8)

For instance, if $u^*(t) = a$, then (from (7)) $\delta u \ge 0$ is required, and thus $(f_u + \lambda g_u) \delta u \le 0$ only if $f_u + \lambda g_u \le 0$. Similarly, if $u^*(t) = b$, then $\delta u \le 0$ is required for a feasible modification and thus $(f_u + \lambda g_u) \delta u \le 0$ only if $f_u + \lambda g_u \ge 0$. And, as usual, if $a < u^*(t) < b$, then δu may have any sign so that $(f_u + \lambda g_u) \delta u \le 0$ can be assured only if $f_u + \lambda g_u = 0$ at t. A statement equivalent to (8) is

$$f_u + \lambda g_u < 0$$
 implies $u(t) = a$,
 $f_u + \lambda g_u = 0$ implies $a \le u(t) \le b$,
 $f_u + \lambda g_u > 0$ implies $u(t) = b$. (8')

Thus, if x^* , u^* solve (1)-(3), then there must be a function λ such that x^* , u^* , λ satisfy (2), (3), (5), and (8). These necessary conditions can be generated by means of the Hamiltonian

$$H = f(t, x, u) + \lambda g(t, x, u).$$

Then (2) and (5) result from

$$x' = \partial H/\partial \lambda, \qquad \lambda' = -\partial H/\partial x.$$

Conditions (8) can be generated by maximizing H subject to (3); this is an ordinary nonlinear programming problem in u.

Solve

$$\max_{\text{subject to}} H = f + \lambda g$$

$$a \le u \le b$$
(9)

by appending the constraints to the objective with multipliers w_1 , w_2 . The Lagrangian for (9) is (see Section A6)

$$L = f(t, x, u) + \lambda g(t, x, u) + w_1(b - u) + w_2(u - a), \quad (10)$$

Section 10. Bounded Controls

from which we obtain the necessary with respect to u:

$$\frac{\partial L}{\partial u} = f_u + \lambda \xi$$

$$w_1 \ge 0, \qquad 1$$

$$w_2 \ge 0$$
, 1

Conditions (11)-(13) are equivaler alternative statement of the requirement $u^*(t) = a$, then $b - u^* > 0$, so (12) $f_u + \lambda g_u + w_2 = 0$. Since $w_2 \ge 0$, This is the first instance in (8). One possibilities.)

Example 1. We solved our production

min
$$\int_0^T (c_1 u^2 + c_2 x) dt$$

subject to $x' = u$, $x(0)$:

in Section 6 and elsewhere in the case that plan is not feasible and explicit acconstraint $u \ge 0$. We now discuss this

This control u(t) is to be chosen at e

$$H = c_1 u^2 + c_2 x + \lambda u,$$

The Lagrangian, with multiplier function

$$L = c_1 u^2 + c_2 y$$

Necessary conditions for u to be minim

$$\partial L/\partial u = 2c_1 u$$

$$w \ge 0, \qquad u \ge 0$$

Further,

$$\lambda' = -\partial H/\delta$$

so that

$$\lambda(t) = k_c$$

for some constant k_0 . Substituting from

$$u(t) = (w - \lambda)/2c_1 =$$

To solve, we make a conjecture about seek a path with this structure satisfying

s δu . Feasible modifications are those is at its lower bound a at some t, then less than a for feasibility, so $\delta u \ge 0$ is trol is at its upper bound b, then any Summarizing,

$$u = a,$$

 $u = b,$
whenever $a < u < b.$ (7)

u consistent with (7). Therefore, u will

f
$$f_u + \lambda g_u \le 0$$
 at t ,
f $f_u + \lambda g_u = 0$ at t ,
f $f_u + \lambda g_u \ge 0$ at t . (8)

om (7)) $\delta u \ge 0$ is required, and thus $u \le 0$. Similarly, if $u^*(t) = b$, then diffication and thus $(f_u + \lambda g_u) \, \delta u \le 0$, if $a < u^*(t) < b$, then δu may have n be assured only if $f_u + \lambda g_u = 0$ at t.

n there must be a function λ such that 8). These necessary conditions can be n

$$)+\lambda g(t,x,u).$$

$$\lambda' = -\partial H/\partial x.$$

naximizing H subject to (3); this is an lem in u.

$$f + \lambda g a \le u \le b$$
 (9)

objective with multipliers w_1, w_2 . The

$$u) + w_1(b-u) + w_2(u-a),$$
 (10)

from which we obtain the necessary conditions for a constrained maximum with respect to u:

$$\partial L/\partial u = f_{u} + \lambda g_{u} - w_{1} + w_{2} = 0, \tag{11}$$

$$w_1 \ge 0, \qquad w_1(b-u) = 0,$$
 (12)

$$w_2 \ge 0, \qquad w_2(u-a) = 0.$$
 (13)

Conditions (11)-(13) are equivalent to conditions (8) and constitute an alternative statement of the requirement, as will be shown in Exercise 6. (If $u^*(t) = a$, then $b - u^* > 0$, so (12) requires $w_1 = 0$; hence, from (11), $f_u + \lambda g_u + w_2 = 0$. Since $w_2 \ge 0$, we have $f_u + \lambda g_u \le 0$ if $u^*(t) = a$. This is the first instance in (8). One continues similarly for the other two possibilities.)

Example 1. We solved our production planning problem

min
$$\int_0^T (c_1 u^2 + c_2 x) dt$$

subject to $x' = u$, $x(0) = 0$, $x(T) = B$, $u(t) \ge 0$

in Section 6 and elsewhere in the case of $B \ge c_2 T^2 / 4c_1$. If $B < c_2 T^2 / 4c_1$, that plan is not feasible and explicit account must be taken of the nonnegativity constraint $u \ge 0$. We now discuss this case.

This control u(t) is to be chosen at each t to minimize the Hamiltonian

$$H = c_1 u^2 + c_2 x + \lambda u$$
, subject to $u \ge 0$.

The Lagrangian, with multiplier function w, is

$$L = c_1 u^2 + c_2 x + \lambda u - wu.$$

Necessary conditions for u to be minimizing (see Exercise 1) are

$$\partial L/\partial u = 2c_1 u + \lambda - w = 0, \tag{14}$$

$$w \ge 0, \qquad u \ge 0, \qquad wu = 0. \tag{15}$$

Further,

$$\lambda' = -\partial H/\partial x = -c_2,$$

so that

$$\lambda(t) = k_0 - c_2 t \tag{16}$$

for some constant k_0 . Substituting from (16) into (14) and rearranging gives

$$u(t) = (w - \lambda)/2c_1 = (c_2t - k_0 + w)/2c_1.$$
 (17)

To solve, we make a conjecture about the structure of the solution and then seek a path with this structure satisfying the conditions. Since the time span T

$$u(t) = 0,$$
 $0 \le t < t^*,$
 $u(t) > 0,$ $t^* \le t \le T,$ (18)

for some t^* to be determined.

When u(t) = 0, we have from (17)

$$w(t) = k_0 - c_2 t \ge 0, \qquad 0 \le t < t^*. \tag{19}$$

Nonnegativity in (19) is required by (15). From (19), w(t) decreases on $0 \le t < t^*$, so nonnegativity is assured provided

$$k_0 - c_2 t^* \ge 0. (20)$$

When u(t) > 0, (15) implies w(t) = 0. Then from (17)

$$u(t) = (c_2 t - k_0)/2 c_1 \ge 0, t^* \le t \le T.$$
 (21)

Since u(t) increases after t^* , $u(t) \ge 0$ for $t^* \le t \le T$ provided that $u(t^*) = (c_2 t^* - k_0)/2c_1 \ge 0$. This requirement and (20) together imply that

$$k_0 = c_2 t^*. (22)$$

Hypothesis (18) now takes the more concrete form

$$u(t) = 0, 0 \le t < t^*,$$

 $u(t) = c_2(t - t^*)/2c_1, t^* \le t \le T.$ (23)

Recalling that u = x' and integrating yields

$$x(t) = 0,$$
 $0 \le t < t^*,$
 $x(t) = c_2(t - t^*)^2 / 4c_1,$ $t^* \le t \le T.$ (24)

The constants of integration were evaluated using the final condition x(0) = 0 and the required continuity of x (so $x(t^*) = 0$). Finally, combining (24) with the terminal condition x(T) = B gives

$$t^* = T - 2(c_1 B/c_2)^{1/2}. (25)$$

With a distant delivery date T, the duration of the production period $T-t^*$ varies directly with c_1B/c_2 ; it increases with the amount to be produced and the production cost coefficient c_1 and decreases with the unit holding cost c_2 . It is precisely the period obtained under the supposition that production had to begin immediately but that the delivery date T could be chosen optimally; see Example I9.1.

Section 10. Bounded Controls

Figure

In sum, the solution is given in the a by (25). Extending our sufficiency the region shows the solution tabulated to b

	$0 \le t < t^*$
u(t)	0
x(t)	0
$\lambda(t)$	$c_2(t^*-t)$
w(t)	$c_2(t^*-t)$

Observe that the solution could *not* be unconstrained problem

$$u(t) = c_2(2t - 7)$$

and deleting the nonfeasible portion! Tai $B \ge c_2 T^2/4 c_1$, and setting u = 0 whene the optimal solution. This is algebraicall cally in Figure 10.1 where $t_1 = T 4c_1B/c_2t$, and t^* is given in (25).

In Figure 10.1, the "solution" (26) be t_1 . Since output is negative for $0 \le t < 1$ Production from t_1 until t_2 is devoted to Production from t_2 until t_2 and followed be produced but costs would be no plan is reflected in the optimal path.

be produced, we guess that there is an some t^* to be determined), with no egins at t^* . Thus our hypothesis is

$$0 \le t < t^*,$$

$$t^* \le t \le T,$$
 (18)

$$\geq 0, \qquad 0 \leq t < t^*. \tag{19}$$

' (15). From (19), w(t) decreases on d provided

$$_{2}t^{*}\geq0. \tag{20}$$

0. Then from (17)

$$:_1 \ge 0, \qquad t^* \le t \le T. \tag{21}$$

) for $t^* \le t \le T$ provided that $u(t^*) =$ nt and (20) together imply that

$$c_2 t^*. (22)$$

oncrete form

$$t^*$$

$$2c_1, \qquad t^* \le t \le T. \tag{23}$$

/ields

 $< t^*$.

$$4c_1, \qquad t^* \le t \le T. \tag{24}$$

nated using the final condition x(0) = 0 $(t^*) = 0$). Finally, combining (24) with

$$(c_1B/c_2)^{1/2}$$
. (25)

ration of the production period $T - t^*$ es with the amount to be produced and lecreases with the unit holding cost c_2 . r the supposition that production had to date T could be chosen optimally; see

Figure 10.1

In sum, the solution is given in the accompanying table, where t^* is given by (25). Extending our sufficiency theorem to cover a constrained control region shows the solution tabulated to be optimal (see Section 15).

	$0 \le t < t^*$	$t^* \le t \le T$
u(t)	0	$c_2(t-t^*)/2c_1$
x(t)	0	$c_2(t-t^*)^2/4c_1$
$\lambda(t)$	$c_2(t^*-t)$	$c_2(t^*-t)$
w(t)	$c_2(t^*-t)$	0

Observe that the solution could *not* be obtained by taking the solution to the unconstrained problem

$$u(t) = c_2(2t - T)/4c_1 + B/T$$
 (26)

and deleting the nonfeasible portion! Taking this solution, appropriate only if $B \ge c_2 T^2/4 c_1$, and setting u=0 whenever it dictates u<0 does not provide the optimal solution. This is algebraically clear and is also illustrated graphically in Figure 10.1 where $t_1=T/2-2c_1B/c_2T$, $t_2=2t_1=T-4c_1B/c_2t$, and t^* is given in (25).

In Figure 10.1, the "solution" (26) begins with u < 0 and reaches u = 0 at t_1 . Since output is negative for $0 \le t < t_1$, inventory is likewise negative. Production from t_1 until t_2 is devoted to driving inventory back up to zero! Production from t_2 until T fulfills the total delivery requirement B. If production were to begin at t_2 and follow the truncated path, a total of B would be produced but costs would be needlessly high. The cost minimizing plan is reflected in the optimal path.