Singular Value Decomposition (SVD)

(Trucco, Appendix A.6)
* Definition
- Any realmxn matrix A can be decomposed uniquely as
A=UDV'

U is mxn and column orthogonal (its columns are eigetors of AAT)
(AAT =UDVTVDUT =UDZUT)

V is nxn and orthogonal (its columns are elgeators of AT A)
(ATA=VDUTUDVT =VD?VT)

D is nxn diagonal (non-ngetive real \alues calledingular values)

D =diag(oy,02,...,0n) ordered so that; = o, 2 T
(if o is a singular alue of A, it's gyuare is an elg@/lalue ofA A)

-1fU =(ug uy ---u,) andV = (vq v, - - - v,), then
n
A= Z O'iUiViT
i=1

(actually the sum goes from 1 towherer is the rank ofA)

* An example

m 2 1D 06 10 6 [
% 3 then AAT = ATA_Blo 17 108
M 2 1D N6 10 6

The eigemalues of AAT, AT A are:

.0 [28.860]
0, O-0 B
T2 DO 145
M0 0 0 O

The eigemectors of AAT, AT A are:

[D. 45407 [0.542 [+0. 7070)
u1=v1=Eb.766%u2=v2=5—0.643%u3=v3=g o U

O
0. 454 10.542 0. 707



The epansion ofAis
2
A= z ol V;r
i=1

Important: note that the second eig@ue is much smaller than the first; if we
neglect it from the abwe summation, we can represeAtby introducing rela-
tively small errors only:

.11 1.87 1.110
_ 0
A gl 87 3.15 1.877
dl.11 1.87 1.110

« Computing the rank using SVD

- The rank of a matrix is equal to the number of non-zero singalaey.

« Computing the inverse of a matrix using SVD
- A square matrixA is nonsingularff o; # O for all i
- If Aiis anxn nonsingular matrix, then itsvarse is gven by
A=UDV'T orAt=vDWUT

] 1 1 1
whereD™! = diag(—, —,...,—)
01 O On

- If Ais singular or ill-conditioned, then we can use SVD to approximate its
inverse by the follaving matrix:

Al=ubDVvHt=vDUT

-1 D1/0'| |f Oj >t
Do =0 .
0 0O otherwise

(wheret is a small threshold)



» The condition of a matrix
- Consider the system of linear equations
Ax=b

If small changes ib can lead to relately large changes in the solutio) then
we call A ill-conditioned.

- The ratio gven below is related to theondition of A and measures the glee
of singularity ofA (the lager this alue is, the closeA is to being singular)

o1lo,

(largest @er smallest singular @lues)

» Least Squaes Solutions oinxn Systems
- Consider theover-determined system of linear equations
Ax = b, (Ais mxnwith m>n)
- Letr be the residualector for some:
r=Ax-b

- The \ector X which vyields the smallest possible residual is callddas-
squares solution (it is an approximate solution).

IIFl| = [JAX" = b|| < [JAx - b|| for all x OR"
- Although a least-squares solutioway}s ist, it might not be unique !

- The least-squares solutionwith the smallest normx| is unique and it is
given by:

ATAx=ATborx=(ATAATb = A'b

Example:
11 20 00
0o g 0¥ 0,0
0, 0O
0 O 0.0
02 -1 PO
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. 0148 .180 .246 03 [P 4920
X=AD=0 16 189 - 10780 0 Bo 7872
D- . . DE5D . D

« Computing A" using SVD

- If AT Aiis ill-conditioned or singulamwe can use SVD to obtain a least squares
solution as follavs:

x=A'b=VDyUTb

Dl/O'i if o >t

Do =
0 BO otherwise

(wheret is a small threshold)

 Least Squaes Solutions ohxn Systems

- If Alis ill-conditioned or singulaiSVD can gve s a workable solution in this
case too:

x=A1b=VDsUTb
« Homogeneous Systems

- Supposeb=0, then the linear system is called homogeneous:
Ax=0
(assumeA is mxn and A = UDV")
- The minimum-norm solution in this casexsO (trivial solution).

- For homogeneous linear systems, the meaning of a least-squares solution is
modified byimposing the constraint:

IIx||=1
- This is a "constrained" optimization problem:

Miny 2 |[AX]|
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- The minimum-norm solution for homogeneous systems is maly/alunique.

Special casgank(A)=n-1(m=n-1,0,=0)

solution isx = av,, (ais a constant)
(v, is the last column d¥ -- corresponds to the smalleskt

General casgank(A) =n-k(m=n-K, op+1 = =0, =0)

solution isx = a1V + aVyk-1 + -+ + &V, (&S is a onstant)

witha? +a3+---+a2=1



