### AM111 Lectures

- 🗆 Week 5
- Week 6
- 🗆 Week 7
- 🗆 Week 8
- Week 9 Spring Break!
- Week 10
- U Week 11
  - 🗆
  - 🗆 Apr. 11th
    - Last time:
      - How to get better accuracy than the Euler method
      - Higher-order Taylor methods
      - Multistage single-step methods
        - How to derive them
        - D Examples: 2nd order and 4th order Runge-Kutta
  - Error Control
    - $\square$  If we know that the local error is  $a e^{m+1}$  and the error is e for a particular h, then
      - given a global error tolerance  $\epsilon$ , we can change the step-size from h 
        ightarrow qh s.t. the

new error  $|q^m e| \simeq \varepsilon$ 

• 
$$\Box$$
  $q \simeq \left| \frac{1}{2e} \right|^{1/m}$ 

• 🗆 One approach: Step doubling

• 
$$\square$$
  $e(h) = kh^{m+1}$  t t+h

( , ) m+1

over h:

• 
$$\Box$$
  $e(h/2) = 2k\left(\frac{1}{2}\right)^{m+1}h^{m+1}$ 

• 
$$\square$$
  $y_{n+1}(h) - y_{n+1}(h/2) = \left[1 - \left(\frac{1}{2}\right)^m\right] kh^{m+1} = [2^m - 1]e(h/2)$ 

- For a 4th order method:
  - $\Box$   $y_{n+1}(h) y_{n+1}(h/2) = 15e(h/2)$
  - We estimate the error made as:  $e(h/2) = \frac{y_{n+1}(h) - y_{n+1}(h/2)}{2^m - 1}$ •
- This works nicely enough, and is easy to write, but has large overhead.
- 🗆 A more efficient (modern) way: Embedded Runge-Kutta method
  - Use two methods of different order (remember ode45!)

• 
$$\Box$$
 (1)  $\tilde{e} = y(t_{n+1}) - \tilde{y}_{n+1}$  this is  $O(h^{m+2})$ 

- $\Box$  (2)  $e = y(t_{n+1}) y_{n+1}$  is  $O(h^{m+1})$
- $\Box$   $e = \tilde{e} + \tilde{y}_{n+1} y_{n+1} \simeq \tilde{y}_{n+1} y_{n+1}$
- The way we do this efficiently is to use the slopes needed to calculate the lowerorder method to help calculate the higher-order method.
- See section 7.5 in Moler's NCM. for an example of a 2nd order method with a 3rd order error estimate.
- Implementation:
  - $\Box$  Calculate  $y_{n+1}$  using the lower order method, and  $\tilde{y}_{n+1}$  using the higher order
    - method. Then:

• 
$$\square$$
  $q = \left|\frac{1}{2(\tilde{y}_{n+1} - y_{n+1})}\right|^{1/m}$ 

• 
$$\Box$$
  $h = qh$ 

• [] if q<1, repeat with the new h

**Sections** 

Office Hours

Apr. 10th

## LectureNotes

# AM111 Lectures

- else (q >=1), continue with new h
- Examples:
  - F=@(t,y) 0; ode23(F,[0 10],1)
  - F=@(t,y) t; ode23(F,[0 10],1)
  - F=@(t,y) y; ode23(F,[0 10],1)
  - F=@(t,y) -y; ode23(F,[0 10],1)
  - F=@(t,y) sin(t); ode23(F,[0 10],1)
    - Cruddy result --Boost tolerance!
    - opts = odeset('RelTol',1e-6);
    - F=@(t,y) sin(t); ode23(F,[0 10],1,opts)
    - Much better!

• 
$$\Box$$
 Pendulum Equation:  $\ddot{\theta} = -\frac{g}{L}\sin\theta$ 

- Watch the tolerance!
- Lorenz Equation:

• 
$$\Box$$
  $\dot{y}_1 = -\beta y_1 + y_2 y_3$   
 $\dot{y}_2 = -\sigma y_2 + \sigma y_3$   
 $\dot{y}_3 = -y_2 y_1 + \rho y_2 - y_3$ 

- Multistep Methods
  - $\square$  Idea is to make use of previously computed  $y_k$ ,  $k \leq n$ , to compute  $y_{n+1}$
  - •

• 
$$\Box \quad \frac{dy}{dt} = f(t, y)$$

• 
$$\Box \quad y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(t, y) dt$$

•  $\square$  Idea:  $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} P(t, y) dt$ 

We will choose different P's to approximate f.

•  $\Box$  First order scheme:  $P_1(t)$  = constant

• 
$$\Box$$
  $y_{n+1} = y_n + \Delta t f(t_n, y_n)$  Euler method!

• 
2nd order method:

• 
$$\square$$
  $P_2(t) = f_{n-1} + \frac{f_n - f_{n-1}}{\Delta t}(t - t_n)$ 

• 
Inserted into the integral equation, this yields:

• 
$$\Box$$
  $y_{n+1} = y_n + \frac{\Delta t}{2} [3f(t_n, y_n) - f(t_{n-1}, y_{n-1})]$ 

- This is the 2nd order Adams-Bashforth method.
- $\Box$  In general, methods which don't involve  $y_{n+1}$  (i.e. explicit methods) are called Adams-Bashforth methods.
- $\Box$  When  $y_{n+1}$  is used to determine P, it's called an Adams-Moulton method
- 🗆 1st order A-M:
  - $\square$   $P_1(t) = const = f(t_{n+1}, y_{n+1})$
  - $\Box$   $y_{n+1} = y_n + \Delta t f(t_{n+1}, y_{n+1})$
  - This is the backward Euler Method!
- 2nd order A-M:

• 
$$\square$$
  $P_2(t) = f_n + \frac{f_{n+1} - f_n}{\Delta t}(t - t_n)$ 

(note similarity to the 2nd order A-B method.)

• 
$$\Box$$
  $y_{n+1} = y_n + \frac{\Delta t}{2} [f(t_{n+1}, y_{n+1}) + f(t_n, y_n)]$ 

- This is the Trapezoidal Method.
- Predictor-Corrector Method
  - 🗆 2nd order example

Sections

2

Office Hours

## • Predictor-Corrector Method

AM111 Lectures 
2nd order example

Prec ● □

dictor (A-B): 
$$y_{n+1}^P = y_n + \frac{\Delta t}{2} [3f_n - f_{n-1}]$$

- Corre
- Corrector (A-M):  $y_{n+1} = y_n + \frac{\Delta t}{2} \left[ f(t_{n+1}, y_{n+1}^P) + f(t_n, y_n) \right]$
- Used to model the orbital mechanics of spacecraft.
- Can we achieve arbitrary accuracy?
  - Of course not.
  - $\Box$  Suppose we intergrate over an interval of length  $L = t_f t_0$
  - The # of steps we take to do this integral is N=L/h.
  - $\bullet$   $\hfill\square$  The roundoff error for each step is  $\hfill$   $\epsilon.$
  - $\Box$  So the total roundoff error is  $< N\epsilon$  (more realistically, this scales as  $\sqrt{N}\epsilon$ )

The total error is thus: 
$$Ch^m + \frac{L}{h}\varepsilon$$
 at mth order. If we make  $h$  too small, then this

blows up.

- Stiffness of Problems:
  - What are some examples of stiff ODEs?

[1]

• 
$$\Box \quad \frac{dy}{dt} = \Lambda y$$

• 
$$\Box$$
  $y(t=0) = \begin{bmatrix} 1 \end{bmatrix}$   
•  $\Box$   $\Lambda = \begin{bmatrix} -100 \ 1 \\ 0 \ \frac{-1}{10} \end{bmatrix}$ 

- 🗆 Using the forward Euler method yields a solution which blows up at large time!
- If we try the backward Euler method, we find that everything's just spiffy. More next time.

• 🗆

- 🛯 Apr. 13th
- Round-off Errors
  - $\Box$  Over the interval  $[t_0, t_f]$  of length  $L = t_f t_0$ , the discretization error is  $Ch^p$ , and the

roundoff error is  $\frac{L}{h} \varepsilon$ .

- $\Box$  For various orders, (if L= 20, C = 100,  $\epsilon = 2^{-52}$ )
  - $\square$  p=1: roundoff error becomes important at  $N = 4.5 \times 10^{17}$
  - 🗆 p=3: " N=5,647,721
  - 🗆 p=5: " N=37,285
  - 🗆 p = 10: " N=864

• 
Stiff problems

• 
$$\Box$$
 example:  $\frac{dy}{dt} = \Lambda y$ 

• 
$$\square$$
  $y(0) = y_0$ 

 $\begin{bmatrix} -100 & 0 \end{bmatrix}$ . This problem is unstable with the forward Euler method.

$$\Box \quad \Lambda = \begin{bmatrix} 1000 \\ 0 & \frac{-1}{10} \end{bmatrix}$$

- 🗆 has two eigenvalues
  - $\Box$   $\lambda_1 = -100$
  - $\Box$   $\lambda_2 = -1/10$
- The forward Euler method is only stable inside the unit circle centered on z=-1 on the complex plane.
- So if we look at the stability condition:
  - $\Box$   $|1 + \lambda \Delta t| < 1$
  - $\Box = |1 + \lambda_1 \Delta t| = 9 < 1$ , if our timestep is too large. (as it was when we tried this before)

Sections

3

Office Hours

•  $\Box = |1 + \lambda_1 \Delta t| = 9 < 1$ , if our timestep is too large. (as it was when we tried this before)

- $\Box$   $|1+\lambda_1\Delta t|=1$  (when  $\Delta t=0.02$ ), we find that the solution using the
  - forward Euler method doesn't blow up!
- $\Box$  Even if the timestep is slightly too large (  $\Delta t = 0.021$ ) the problem will
  - eventually blow up. (although it does so more slowly than before)
- Definition: A problem is "stiff" if the solution being sought varies slowly, but there are nearby solutions that vary rapidly, so that the numerical methods must take small steps obtain satisfactory results.
  - Alternative Definition: A problem is stiff if its numerical solution by some methods requires (perhaps in only a portion of the solution interval) a significant depression of the step-size to avoid instability.
- The <u>stiffness ratio</u> is the ratio of the largest and smallest (in modulus) eigenvalues of a linear system (for a general problem, these are the eigenvalues of the Jacobian matrix)
  - The stiffness ratio of our example problem was 1000.
  - $\Box$  For comparision, consider the world record stiffness of  $10^{31}$  (from cosmological

**Big-Bang simulation**)

- Looking back at section 7.12 in the NCM, we now understand ode45, ode23, and ode113. What about ode15s? It uses backward differentiation formulas (BDFs)
  - 🗆 BDF

• 
$$\Box \quad \frac{dy}{dt} = f(t, y)$$

• 
$$\Box$$
  $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(t, y) dt \simeq y_n + \int_{t_n}^{t_{n+1}} P(t, y) dt$ 

- ode23s is based on a modified Rosenbrock formula of order 2
  - Rosenbrock formula:
  - This is a generalized implicit Runge-Kutta formula

$$s_{i-1}$$
 is an explicit method. If we let the sum go over all the slopes,  
 $\Box s_i = f(t, \sum \beta_{i,k,S_k})$ 

• 
$$\Box$$
  $s_i = f(t, \sum_{k=1}^{k} \beta_{i,k} s_k)$ 

then

we have an implicit method.

• 
$$\Box$$
  $s_i = f(t, \sum_{k=1}^{i} \beta_{i,k} s_k)$ 

 Consider the problem of the size of an expanding flame. The flame depends upon oxygen to exist, so it can grow at a rate proportional to the rate at which oxygen is available to it. If the ball is of radius y, then the rate of injection of oxygen is proportional to y^2. Oxygen consumption should go as the volume of the flame, or y^3. Thus

• 
$$\Box$$
  $\dot{y} = y^2 - y^3$ 

- $\Box$  let  $y(0) = \delta$ , and then run the simulation from  $0 \le t \le 2/\delta$
- D We notice that this problem is solved much faster with implicit methods than by explicit methods. (recall section, and NCM)
- D Why is this so? To find out, let's linearize the equations (find the Jacobian)
  - $\Box$   $J = f_y = 2y 3y^2$  Near equilibrium, y=1.

• 
$$\Box$$
  $\dot{y} = J|(y - y_c) = -1(y - 1)$ 

•  $\Box$   $\lambda = -1$ , so the timestep must be  $\Delta t \leq 2$ , which seems big, but the span we're trying

to cover is huge, so this severely constrains the span we can solve this over.

- Implicit methods, by contrast, allow us to take arbitrarily huge timesteps once we're near equilibrium. They're much better for problems like these.
- Summary:
  - Single-step (multistage) methods
  - Multistep methods
    - useful for smooth problems that require high accuracy and where evaluations of f (t,y) are expensive
    - Explicit methods are easier to implement

Office Hours

• 
Multistep methods

#### LectureNotes

AM111 Lectures Explicit methods are easier to implement

- Implicit methods have larger regions of stability
- D Boundary Value Problems:
  - 🗆 A 2nd order BVP is (in general)

• 
$$\square \quad \frac{d^2y}{dt^2} = f(t, y, \frac{dy}{dt})$$

•  $\square$  on  $t \in [a,b]$  with the general boundary conditions

$$\Box \quad \alpha_1 y(a) + \beta_1 \frac{dy(a)}{dt} = \gamma_1$$
$$\alpha_2 y(b) + \beta_2 \frac{dy(b)}{dt} = \gamma_2$$

- U We don't have enough information to set up an initial condition to run forward from, so what do we do?
- Shooting Methods:
  - $\Box$  guess that  $y(a) = \gamma_1, y'(a) = A_1$ . We then run the initial condition problem

forward and find out that this leads to  $y(b,A_1) = \gamma_3$ . This is a tad off (perhaps bigger than  $\gamma_2$ ), so we try another guess,  $y(a) = \gamma_1, y'(a) = A_2$ . This gives us another result  $y(b,A_2) = \gamma_4$ , which might be smaller than  $\gamma_2$ . The general problem is to find an argument A s.t.



- $\Box$   $y_b(A) \gamma_2 = 0$ 
  - This is a zero-finding problem!
- Finite Difference Methods
  - For example, the Schrödinger equation

• 
$$\Box \quad \frac{d^2y}{dt^2} + [V(t) - E]y = 0$$

• 
$$\Box$$
  $y(0) = 0$ 

• 
$$\square$$
  $y(1) = 0$ 

• 
$$\Box \quad \frac{d^2y}{dt^2} = \frac{y(t+\Delta t) - 2y(t) + y(t-\Delta t)}{\Delta t^2}$$

• 🗆 so that

• 
$$\Box \frac{y_{n+1} - 2y_n + y_{n-1}}{\Delta t^2} + (V_0 - E)y_n = 0$$
, with  $y_1 = y_N = 0$ .

• 
 This can be written in matrix form as

Sections

LectureNotes

AM111 Lectures This can be written in matrix form as

$$\Box \begin{bmatrix} -2 + V_0 \Delta t^2 & 1 & 0 & 0 \dots & 0 \\ 1 & -2 + V_0 \Delta t^2 & 1 & 0 \dots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 - 2 + V_0 \Delta t^2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ \vdots \\ y_{N-1} \end{bmatrix} = E \begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ \vdots \\ y_{N-1} \end{bmatrix}$$

• 
Let's try an example

•

• 
$$\Box \quad \frac{d^2y}{dt^2} = y^2 - 1$$

- $\Box$  y(0) = 0, y(1) = 1
- 🗆 Using a shooting method
  - $\square$   $y(0) = 0, y'(0) = 1 \leftarrow$  a guess
    - $\Box$  This leads to  $y(t=1) 1 \simeq .45$
  - $\Box$  Trying y(0) = 0, y'(0) = 2
    - $\Box$  This leads to  $y(t=1) 1 \simeq$  something less than 0.
  - Thus we've bracketed the zero, and we can just solve this problem using whatever our favorite root finding method is.
- We can also try a finite difference method:
  - $\Box$  This forms a linear system A(y)y = b (the coefficient matrix A depends upon y)
  - This requires some iteration to solve.

• 
$$\Box \quad \frac{y_{n+1}-2y_n+y_{n-1}}{\Delta t^2} = y_n^2 - 1$$
, which, in matrix form is

- $\Box$  We have  $Ay + b = \Delta t^2 c(y)$
- This can be solved by linear iteration.
- Newton's method:
  - $\square$  Residue:  $Ay + b (\Delta t)^2(y^2 1)$
  - $\Box$  Jacobian:  $A 2(\Delta t)^2 y$
  - $\Box$  J $\Delta y$ =-Residue
- Alternatively, we could just use the MATLAB function bvp4c
  - 🗆 To use, we first:
    - $\Box$  (a) write the ODE in standard form
    - $\square$  (b) write a function to describe your boundary condition

• 
$$\Box$$
  $y_2 = \dot{y}_1$ 

• 
$$\Box$$
  $\dot{y}_1 = y_2, \dot{y}_2 = y_1^2 - 1$ 

•  $\Box$   $y_1(0) = 0$ 

• 
$$\Box$$
  $y_1(1) - 1 = 0$ 

- 🗆
- 🗆 Week 12
- 🗆 Week 13
- 🗆 Week 14

6