
4/13/06 1:54:49 PMLectureNotes

1

AM111 Lectures Sections Office Hours
Week 5
Week 6
Week 7
Week 8
Week 9 Spring Break!
Week 10
Week 11

Apr. 10th
Apr. 11th

Last time:
How to get better accuracy than the Euler method
Higher-order Taylor methods
Multistage single-step methods

How to derive them
Examples: 2nd order and 4th order Runge-Kutta

Error Control
If we know that the local error is ∝ hm+1 and the error is e for a particular h , then

given a global error tolerance ε , we can change the step-size from h→ qh s.t. the

new error |qme| ! ε
This implies

q!
∣∣∣∣

1
2e

∣∣∣∣
1/m

One approach: Step doubling
over h: e(h) = khm+1

h/2 h/2

t t+h

over h:
e(h/2) = 2k

(
1
2

)m+1

hm+1

yn+1(h)− yn+1(h/2) =
[

1−
(

1
2

)m]
khm+1 = [2m−1]e(h/2)

For a 4th order method:
yn+1(h)− yn+1(h/2) = 15e(h/2)

We estimate the error made as:
e(h/2) =

yn+1(h)− yn+1(h/2)
2m−1

This works nicely enough, and is easy to write, but has large overhead.
A more efficient (modern) way: Embedded Runge-Kutta method

Use two methods of different order (remember ode45!)
(1) ẽ = y(tn+1)− ỹn+1

 this is O(hm+2)
(2) e = y(tn+1)− yn+1

 is O(hm+1)
e = ẽ+ ỹn+1− yn+1 " ỹn+1− yn+1

The way we do this efficiently is to use the slopes needed to calculate the lower-
order method to help calculate the higher-order method.
See section 7.5 in Moler's NCM. for an example of a 2nd order method with a
3rd order error estimate.

Implementation:
Calculate yn+1 using the lower order method, and ỹn+1 using the higher order

method. Then:

q =
∣∣∣∣

1
2(ỹn+1− yn+1)

∣∣∣∣
1/m

h = qh

if q<1, repeat with the new h

4/13/06 1:54:49 PMLectureNotes

2

AM111 Lectures Sections Office Hours

Week 11

Apr. 11th

Error Control

A more efficient (modern) way: Embedded Runge-Kutta method

Implementation:

if q<1, repeat with the new h
else (q >=1), continue with new h

Examples:
F=@(t,y) 0; ode23(F,[0 10],1)
F=@(t,y) t; ode23(F,[0 10],1)
F=@(t,y) y; ode23(F,[0 10],1)
F=@(t,y) -y; ode23(F,[0 10],1)
F=@(t,y) sin(t); ode23(F,[0 10],1)

Cruddy result --Boost tolerance!
opts = odeset('RelTol',1e-6);
F=@(t,y) sin(t); ode23(F,[0 10],1,opts)
Much better!

Pendulum Equation: θ̈ =−g
L

sinθ

Watch the tolerance!
Lorenz Equation:

ẏ1 =−βy1 + y2y3

ẏ2 =−σy2 +σy3

ẏ3 =−y2y1 +ρy2− y3

Multistep Methods
Idea is to make use of previously computed yk , k ≤ n, to compute yn+1

dy
dt

= f (t,y)

yn+1 = yn +
Z tn+1

tn
f (t,y)dt

Idea:
yn+1 = yn +

Z tn+1

tn
P(t,y)dt

 We will choose different P's to approximate f.

First order scheme: P1(t) = constant

yn+1 = yn +∆t f (tn,yn) Euler method!

2nd order method:

P2(t) = fn−1 +
fn− fn−1

∆t
(t− tn)

Inserted into the integral equation, this yields:

yn+1 = yn +
∆t
2

[3 f (tn,yn)− f (tn−1,yn−1)]

This is the 2nd order Adams-Bashforth method.
In general, methods which don't involve yn+1 (i.e. explicit methods) are called

Adams-Bashforth methods.
When yn+1 is used to determine P, it's called an Adams-Moulton method

1st order A-M:
P1(t) = const = f (tn+1,yn+1)

yn+1 = yn +∆t f (tn+1,yn+1)
This is the backward Euler Method!

2nd order A-M:

P2(t) = fn +
fn+1− fn

∆t
(t− tn)

(note similarity to the 2nd order A-B method.)

yn+1 = yn +
∆t
2

[f (tn+1,yn+1)+ f (tn,yn)]

This is the Trapezoidal Method.
Predictor-Corrector Method

2nd order example

4/13/06 1:54:49 PMLectureNotes

3

AM111 Lectures Sections Office Hours

Week 11

Apr. 11th

Multistep Methods

Idea:
yn+1 = yn +

Z tn+1

tn
P(t,y)dt

 We will choose different P's to approximate f.

Predictor-Corrector Method
2nd order example
Predictor (A-B) :

yP
n+1 = yn +

∆t
2

[3 fn− fn−1]

Corrector (A-M):
yn+1 = yn +

∆t
2

[
f (tn+1,yP

n+1)+ f (tn,yn)
]

Used to model the orbital mechanics of spacecraft.
Can we achieve arbitrary accuracy?

Of course not.
Suppose we intergrate over an interval of length L = t f − t0
The # of steps we take to do this integral is N=L/h.
The roundoff error for each step is ε .
So the total roundoff error is < Nε (more realistically, this scales as √Nε)

The total error is thus:
Chm +

L
h

ε
 at mth order. If we make h too small, then this

blows up.
Stiffness of Problems:

What are some examples of stiff ODEs?
dy
dt

= Λy

y(t = 0) =
[

1
1

]

Λ =
[
−100 1

0 −1
10

]

Using the forward Euler method yields a solution which blows up at large time!
If we try the backward Euler method, we find that everything's just spiffy. More next
time.

Apr. 13th
Round-off Errors

Over the interval [t0, t f] of length L = t f − t0 , the discretization error is Chp , and the

roundoff error is L
h

ε
.

For various orders, (if L= 20, C = 100, ε = 2−52)

p=1: roundoff error becomes important at N = 4.5×1017

p=3: " N=5,647,721
p=5: " N=37,285
p = 10: " N=864

Stiff problems
example: dy

dt
= Λy

y(0) = y0

Λ =
[
−100 0

0 −1
10

]. This problem is unstable with the forward Euler method.

has two eigenvalues
λ1 =−100
λ2 =−1/10

The forward Euler method is only stable inside the unit circle centered on z=-1
on the complex plane.
So if we look at the stability condition:

|1+λ∆t| < 1

= |1+λ1∆t| = 9 < 1, if our timestep is too large. (as it was when we tried

this before)

4/13/06 1:54:49 PMLectureNotes

4

AM111 Lectures Sections Office Hours

Week 11

Apr. 13th

Stiff problems
example: dy

dt
= Λy

Λ =
[
−100 0

0 −1
10

]. This problem is unstable with the forward Euler method.

So if we look at the stability condition:

= |1+λ1∆t| = 9 < 1, if our timestep is too large. (as it was when we tried

this before)
If we make a smaller timestep, so that
|1+λ1∆t| = 1 (when ∆t = 0.02), we find that the solution using the

forward Euler method doesn't blow up!
Even if the timestep is slightly too large (∆t = 0.021) the problem will

eventually blow up. (although it does so more slowly than before)
Definition: A problem is "stiff" if the solution being sought varies slowly, but there are
nearby solutions that vary rapidly, so that the numerical methods must take small
steps obtain satisfactory results.

Alternative Definition: A problem is stiff if its numerical solution by some methods
requires (perhaps in only a portion of the solution interval) a significant depression
of the step-size to avoid instability.

The stiffness ratio is the ratio of the largest and smallest (in modulus) eigenvalues of
a linear system (for a general problem, these are the eigenvalues of the Jacobian
matrix)

The stiffness ratio of our example problem was 1000.
For comparision, consider the world record stiffness of 1031 (from cosmological

Big-Bang simulation)
Looking back at section 7.12 in the NCM, we now understand ode45, ode23, and
ode113. What about ode15s? It uses backward differentiation formulas (BDFs)

BDF
dy
dt

= f (t,y)

yn+1 = yn +
Z tn+1

tn
f (t,y)dt ! yn +

Z tn+1

tn
P(t,y)dt

ode23s is based on a modified Rosenbrock formula of order 2
Rosenbrock formula:

This is a generalized implicit Runge-Kutta formula

si = f (t,
i−1

∑
k=1

βi,ksk)
 is an explicit method. If we let the sum go over all the slopes,

then

si = f (t,
i

∑
k=1

βi,ksk)
 we have an implicit method.

Consider the problem of the size of an expanding flame. The flame depends upon
oxygen to exist, so it can grow at a rate proportional to the rate at which oxygen is
available to it. If the ball is of radius y, then the rate of injection of oxygen is proportional
to y^2. Oxygen consumption should go as the volume of the flame, or y^3. Thus
ẏ = y2− y3

let y(0) = δ, and then run the simulation from 0≤ t ≤ 2/δ
We notice that this problem is solved much faster with implicit methods than by explicit
methods. (recall section, and NCM)
Why is this so? To find out, let's linearize the equations (find the Jacobian)

J = fy = 2y−3y2 Near equilibrium, y=1.

ẏ = J|(y− yc) =−1(y−1)

λ =−1, so the timestep must be ∆t ≤ 2, which seems big, but the span we're trying

to cover is huge, so this severely constrains the span we can solve this over.
Implicit methods, by contrast, allow us to take arbitrarily huge timesteps once we're
near equilibrium. They're much better for problems like these.

Summary:
Single-step (multistage) methods
Multistep methods

useful for smooth problems that require high accuracy and where evaluations of f
(t,y) are expensive
Explicit methods are easier to implement

4/13/06 1:54:49 PMLectureNotes

5

AM111 Lectures Sections Office Hours

Week 11

Apr. 13th

Summary:

Multistep methods

Explicit methods are easier to implement
Implicit methods have larger regions of stability

Boundary Value Problems:
A 2nd order BVP is (in general)

d2y
dt2 = f (t,y,

dy
dt

)

on t ∈ [a,b] with the general boundary conditions

α1y(a)+β1
dy(a)

dt
= γ1

α2y(b)+β2
dy(b)

dt
= γ2

We don't have enough information to set up an initial condition to run forward from, so
what do we do?
Shooting Methods:

guess that y(a) = γ1,y′(a) = A1
. We then run the initial condition problem

forward and find out that this leads to y(b,A1) = γ3
. This is a tad off (perhaps

bigger than γ2), so we try another guess, y(a) = γ1,y′(a) = A2
. This gives us

another result y(b,A2) = γ4
, which might be smaller than γ2 . The general

problem is to find an argument A s.t.

a b

g2

t

y

y(b,A1)=g3

y(b,A2)=g4y'(a)=A1

y'(a)=A2

yb(A)− γ2 = 0

This is a zero-finding problem!
Finite Difference Methods

For example, the Schrödinger equation
d2y
dt2 +[V (t)−E]y = 0

y(0) = 0

y(1) = 0

d2y
dt2 =

y(t +∆t)−2y(t)+ y(t−∆t)
∆t2

so that
yn+1−2yn + yn−1

∆t2 +(V0−E)yn = 0
, with y1 = yN = 0.

This can be written in matrix form as

4/13/06 1:54:49 PMLectureNotes

6

AM111 Lectures Sections Office Hours

Week 11

Apr. 13th

Boundary Value Problems:

Finite Difference Methods

This can be written in matrix form as




−2+V0∆t2 1 0 0 . . . 0
1 −2+V0∆t2 1 0 . . . 0
0 0 0
0 0 . . . 0 1 −2+V0∆t2









y2
y3
...
...

yN−1




= E





y2
y3
...
...

yN−1





Let's try an example
d2y
dt2 = y2−1

y(0) = 0,y(1) = 1

Using a shooting method
y(0) = 0,y′(0) = 1 ← a guess

This leads to y(t = 1)−1" .45

Trying y(0) = 0,y′(0) = 2

This leads to y(t = 1)−1" something less than 0.

Thus we've bracketed the zero, and we can just solve this problem using whatever
our favorite root finding method is.

We can also try a finite difference method:
This forms a linear system A(y)y = b (the coefficient matrix A depends upon y)

This requires some iteration to solve.
yn+1−2yn + yn−1

∆t2 = y2
n−1

, which, in matrix form is





−2 1 0 0 0 . . .
1 −2 1 0 0 0
0 1 −2 1 0 0
.
. . . 0 0 0 1 −2









y2
y3
y4
...

yN−1




+





0
0
0
0
0
1





 A y + b

We have Ay+b = ∆t2c(y)
This can be solved by linear iteration.

Newton's method:
Residue: Ay+b− (∆t)2(y2−1)
Jacobian: A−2(∆t)2y

J∆y=-Residue

Alternatively, we could just use the MATLAB function bvp4c
To use, we first:

(a) write the ODE in standard form
(b) write a function to describe your boundary condition

y2 = ẏ1

ẏ1 = y2, ẏ2 = y2
1−1

y1(0) = 0

y1(1)−1 = 0

Apr. 14th
Week 12
Week 13
Week 14

