AM111 Lectures	Sections	Office Hours
• 🗆 Week 5		
• 🗆 Week 6		
• 🗆 Week 7		
• 🗆 Week 8		
• Week 9 Spring Break!		
• 🗆 Week 10		
		Apr. 3rd
• Apr. 4th		
 Numerical Solutions of Ordinary Differential Equations (ODEs) Initial Value Problems 		
• $\Box \frac{d\vec{y}(t)}{dt} = \vec{f}(t, \vec{y}(t))$		
 Example 1: Compound Interest 		
• $\Box \frac{dy}{dt} = ry$		
• $\Box \frac{dt}{dt} = ry$		
• \Box $y(t=0) = y_0$		
• \Box $y(t) = y_0 e^{rt}$		
• Example 2: single pendulum		
• $\Box \frac{d^2\theta}{dt} = -\frac{g}{I}\sin\theta$		
• \square $\theta(t=0) = a, \frac{d\theta(t=0)}{dt} = b$		
• \Box $y_1 = \Theta$		
• \Box $y_2 = \frac{d\theta}{dt} = \dot{\theta}$		
• 🗆 so now		
• $\Box \frac{dy_1}{dt} = y_2$, and $\frac{dy_2}{dt} = -\frac{g}{L}\sin y_1$		
• Example 3: # of rabbits		
• \Box r = # of rabbits		
• \Box f = # of foxes		
• $\Box \frac{dr}{dt} = 2r - 2rf$		
<i>ui</i>		
• $\Box \frac{df}{dt} = -f + 2rf$		
• \Box $r(0) = r_0$, and $f(0) = f_0$		
 This is the Lotta-Volterra predator-prey model 		
• This is a nonlinear equation!		
Example 4: Chemical Reactions		
• \square Part of Ozone Chemistry is:		
• \Box $O_3 + O_2 \leftarrow^{k_2} \rightarrow_{k_1} O + 2O_2$		
$\bullet \Box O_3 + O \rightarrow_{k_3} 2O_2$		
• \Box Defining $y_1 = [O_3], y_2 = [O], y_3 = [O_2]$		
• \Box $\dot{y}_1 = -k_1 y_1 y_3 + k_2 y_2 y_3^2 - k_3 y_1 y_2$		

4/13/06 10:54:40 AM

1

- \Box $\dot{y}_3 = k_1 y_1 y_3 k_2 y_2 y_3^2 + 2k_3 y_1 y_2$

LectureNotes

Numerical solution:
 Generate a sequence of values for t, {t₀, t₁,..., t_n,...}, and a

corresponding sequence for the dependent variable $\{y_0, y_1, \dots, y_n, \dots\}$

s.t. $y_n \simeq y(t_n)$

AM111 Lectures

Sections

Office Hours

• \Box Generate a sequence of values for t, $\{t_0, t_1, \ldots, t_n, \ldots\}$, and a

corresponding sequence for the dependent variable $\{y_0, y_1, \dots, y_n, \dots\}$

s.t. $y_n \simeq y(t_n)$

- Let's take a constant step size:
- \Box $t_{n+1} t_n = h \rightarrow t_n = nh + t_0$

•
$$\square \quad \frac{dy}{dt} = f(t, y)$$

•
recall that:

•
$$\square \left| \frac{dy}{dt} \right|_{t_n} = \lim_{t_{n+1} \to t_n} \frac{y_{n+1} - y_n}{t_{n+1} - t_n}$$

•
So that

•
$$\Box$$
 $f(t_n, y_n) = \frac{y_{n+1} - y_n}{\Delta t} \rightarrow y_{n+1} = y_n + f(t_n, y_n) \Delta t$

- This is Euler's Method.
 - Check for the case of $\frac{dy}{dt} = y$

- D Notice that the result is only approximate. We have errors (discretization errors) at each step.
- Another way to solve this involves another way to take a derivative:

•
$$\Box \left. \frac{dy}{dt} \right|_{t_{n+1}} = \lim_{t_n \to t_{n+1}} \frac{y_n - y_{n+1}}{t_n - t_{n+1}}$$

- so that
- $\Box y_{n+1} f(t_{n+1}, y_{n+1})\Delta t = y_n$
- This is the Backward Euler Method, and is an *implicit* method.
- \Box A method is called *explicit* if y_{n+1} can be computed <u>directly</u> in terms of the

previous values of $y_k, k \leq n$.

• \Box A method is called *implicit* if y_{n+1} depends implicitly upon itself through

f(t, y)

- \Box The backward Euler method can be found through the familiar process of zero finding! We simply want to find the zero of $y_{n+1} - y_n - f(t_{n+1}, y_{n+1})\Delta t$
- \Box We now check out the case of $\lambda = i$. Looking at the real part, we find that the

exact solution is a nice sinusoid, but that our Euler Method solution is a growing sinusoid, and that the Backward Euler Method produces a damped sinusoid. What's up with that?

• \Box Using the forward Euler method, we find that $y_n = (1 + \Delta t \lambda)^n y_0$

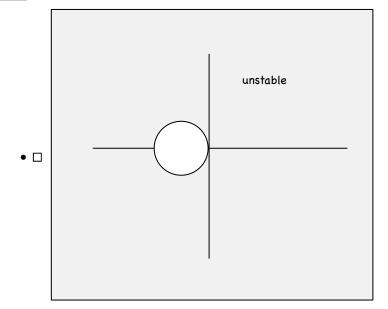
•
$$\square \quad \frac{|y_n|}{|y_0|} = |1 + \Delta t \lambda|^n$$

- \square For $\lambda = i, |1 + \Delta t i| = \sqrt{1 + (\Delta t)^2} > 1$
- \Box Defining $z = \Delta t \lambda$, we find that the above quantity is only less than 1 in the unit circle centered at z=-1.
- \Box When I1+zl>1, then $|y_n| \to \infty$ as $n \to \infty$

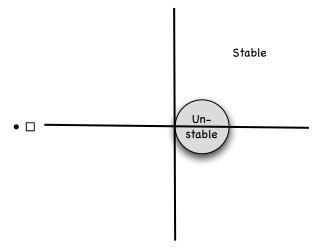
4/13/06 10:54:40 AM

```
Office Hours
```

Sections



• \Box For the backward Euler Method, $y_n = y_0(1 - \Delta t \lambda)^{-n}$, which is going to blow up for all $~\lambda$ inside the unit circle centered on +1.



- $\bullet\ \square$ What can we figure out about the solution from the local behavior of f(t,y) near t_c, y_c ?
 - \Box $f(t,y) = f(t_c,y_c) + \alpha(t-t_c) + J(y-y_c) + \dots$ ∂f

•
$$\Box \quad \alpha = \frac{\partial f}{\partial t}(t_c, y_c)$$

• $\Box \quad J = \frac{\partial f}{\partial t}(t_c, y_c)$

•
$$\Box$$
 $J = \frac{1}{\partial y}(l_c, y_c)$

• 🗆 J is the jacobian matrix.

The local behavior of $\frac{dy}{dt} = f(t,y)$ near t_c, y_c can be approximated by •

$$\frac{d\vec{y}}{dt} = J\vec{y}$$
 if we ignore the α term.

• \Box $J = V\Lambda V^{-1}$ • \Box $\Lambda =$ diagonal eigenvalue matrix, and $V\vec{x} = \vec{y}$, $\frac{d\vec{x}}{dt} = \Lambda \vec{x}$ (V is an

eigenvector matrix)

•
So let's go back to our pendulum problem. The jacobian matrix is now

LectureNotes

AM111 Lectures

• \Box $J = \begin{pmatrix} 0 & 1 \\ -\frac{g}{L}\cos y_1 0 \end{pmatrix}$

whose eigenvalues are:

•

$$\pm \sqrt{-\frac{g}{L}\cos y_1}$$

- ☐ What about accuracy?
 - Definition: Local Discretization Error
 - \Box $\varepsilon_{k+1} = y(t_{k+1}) [y(t_k) + \Delta t \phi]$
 - \Box where $y(t_{k+1}), y(t_k)$ are the exact solutions at t_{k+1} and t_k ,

respectively, and \phi is the one-step approximation over the time interval $t \in [t_k, t_{k+1}]$.

- \Box i.e. $\phi = f(t_n, y(t_n))$
- Definition: Global Discretization Error
 - \Box $E_k = y(t_k) y_k$, where y_k is the approximate solution.
- Example: Forward Euler

•
$$\Box$$
 $y(t_k + \Delta t) = y(t_k) + \frac{dy(t)}{dt} \bigg|_{t_k} \Delta t + \frac{1}{2} \frac{d^2 y(c_k)}{dt^2} \Delta t^2$

•
$$\Box$$
 $c_k \in [t_k, t_k + \Delta t]$

•
$$\Box$$
 $y(t_{k+1}) = y(t_k) + f(t_k, y_k(t))\Delta t + \frac{1}{2} \frac{d^2 y(c_k)}{dt^2} (\Delta t)^2$

• □

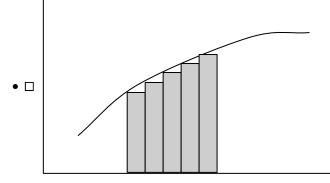
Local Error:

$$\varepsilon_k = \frac{(\Delta t)^2}{2} \frac{d^2 y(c_k)}{dt^2} \sim O(\Delta t^2)$$

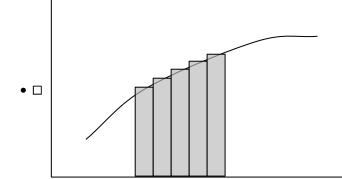
• \Box Global Error: Consider integration over a specified time interval $t \in [a, b]$. We have K steps, so that $\Delta t K = b - a$.

•
$$\Box$$
 $E_K = \sum_{j=1}^K \frac{\Delta t^2}{2} \frac{d^2 y(c_j)}{dt^2} \simeq \frac{\Delta t^2}{2} CK = \frac{\Delta t}{2} C(b-a) \sim O(\Delta t)$

- D Next time, we'll look at quadrature methods.
- D Notice that the forward Euler method is essentially just the simplest form of quadrature --Rectangles!



• D Backwards Euler is just about the same.

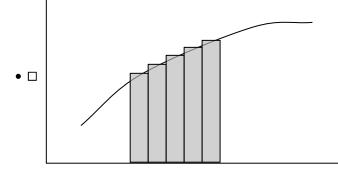


Office Hours

Sections

AM111 Lectures

Office Hours



- 🗆 Apr. 6th
 - Last time...
 - We went over initial value problems for ODEs.

•
$$\square \quad \frac{d\vec{y}(t)}{dt} = f(t, \vec{y}(t))$$

•
$$\Box$$
 $\vec{y}(t) = \vec{y}_0$

- Euler's Method
 - Forward (explicit)
 - D Backward (implicit)
- Stability
 - Forward Euler
 - D Backward Euler
- 🗆 Accuracy
- How can we get better accuracy?
 - \Box Given $y(t_i)$, how do we get $y(t_i + \Delta t)$ accurately?
 - Taylor Methods
 - D Suppose y has n continuous derivatives on the interval [a,b], and y^(n+1) exists on [a,b], and that $t_i, t_i + \Delta t \in [a,b]$.
 - \Box Then there exists a number $c \in (t_i, t_i + \Delta t)$ s.t.
 - \Box $y(t_i + \Delta t) = P_n + R_n$

Where $P_n = \sum_{k=0}^n rac{y^{(k)}(t_i)}{k!} (\Delta t)^k$ is the nth Taylor Polynomial.

- 🗆
- and $R_n = rac{y^{(n+1)}(c)}{(n+1)!} (\Delta t)^{n+1}$ is the residual. • 🗆

• \Box We will use P_n to approximate $y(t_i + \Delta t)$. This is the Taylor method of order n.

● □ For n=1

•
$$\Box$$
 $y(t_i + \Delta t) = y(t_i) + \frac{dy(t_i)}{dt}\Delta t = y(t_i) + f(t_i, y(t_i))$

- \Box This is the Euler method. The error scales as order 1 in Δt .
- □ For n=2

•
$$\Box \quad y(t_i + \Delta t) = y(t_i) + \frac{dy(t_i)}{dt} \Delta t + \frac{1}{2} \frac{d^2 y(t_i)}{dt^2} (\Delta t)^2$$

• $\Box \quad = y(t_i) + f(t_i, y(t_i)) + \frac{1}{2} \frac{df(t_i, y(t_i))}{dt} (\Delta t)^2$

- This is a tad messy. We want higher order methods but we don't want to have to take higher order derivatives.
- Different approach -- Numerical Quadrature

•
$$\square \quad \frac{dy}{dt} = f(t, y)$$

LectureNotes

AM111 Lectures

$$\Box \quad \frac{dy}{dt} = f(t, y)$$

•
$$\Box$$
 $y(t_i + \Delta t) = y(t_i) + \int_{t_i}^{t_i + \Delta t} f(s, y(s)) ds$

•
If the function f(t,y) does not depend upon y, then

•
$$\Box$$
 $y(t_i + \Delta t) = y(t_i) + \int_{t_i}^{t_i + \Delta t} f(s) ds$

- Recall that the Euler method is equivalent to evaluating this integral as sum of rectangles.
- D One way to improve it would be to use the midpoint method to estimate the height of these rectangles.

•
$$\Box f(t + \frac{\Delta t}{2})\Delta t$$

• \Box This yields an error of order $O(\Delta t^2)$

- \Box The midpoint rule would yield for y_{n+1}
- \Box $y_{n+1} = y_n + f(t_n + (\Delta t/2), y(t_n + (\Delta t/2))) \Delta t$
- We approximate $y(t_n + \frac{\Delta t}{2})$ by the Euler method:

•
$$\Box$$
 $y(t_n -$

• \Box $s_1 = f(t_n, y_n)$

•
$$\Box$$
 $s_2 = f(t_n + \frac{\Delta t}{2}, y_n + \frac{\Delta t}{2}s_1)$

• \Box $y_{n+1} = y_n = \Delta t s_2$

•
This is 2nd-order Runge-Kutta.

•
We could also use the trapezoidal quadrature.

•
$$\Box \quad \frac{\Delta t}{2} \left[f(t) + f(t + \Delta t) \right]$$

- \Box This also yields an error of order $O(\Delta t^2)$
- Trapezoidal Rule:

•
$$\square$$
 $y_{n+1} = y_n + \frac{\Delta t}{2} \left[f(t_n, y_n) + f(t + \Delta t, y(t_n + \Delta t)) \right]$

- \Box We can approximate $y(t_n + \Delta t)$ by y_{n+1} or estimate using Euler's Method.
- Choice #1, The Trapezoidal (or Crank-Nicolson) method

•
$$\Box \quad y_{n+1} = y_n + \Delta t \frac{f(t_n, y_n) + f(t_n + \Delta t, y_{n+1})}{2}$$

- Choice #2, Heun's Method.
 - \Box $s_1 = f(t_n, y_n)$
 - \Box $s_2 = f(t_n + \Delta t, y_n + \Delta t s_1)$

•
$$\Box$$
 $y_{n+1} = y_n + \Delta t \frac{s_1 + s_2}{2}$

- Choice #1 is an implicit method, while choice #2 is an explicit method.
- U We could also consider Simpson's rule: A ≁ Γ

•
$$\Box \quad \frac{\Delta t}{6} \left[f(t) + 4f\left(t + \frac{\Delta t}{2}\right) + f(t + \Delta t) \right]$$

• \Box which is a fourth order method $O(\Delta t^4)$

Sections **Office Hours**

- D Before we move on, is it worth the effort? We have to do extra work to use these methods instead of Euler's method.
 - Decreasing the step size by a factor of 10:
 - D For 1st order methods, we use 9 times more evaluations, and the error drops by a factor of 10.
 - D For 2nd order methods, we use 18 times more evaluations, and the error drops by a factor of 100.
- 🗆 4th order Runge-Kutta method:
 - \Box $h = \Delta t$
 - \Box $s_1 = f(t_n, y_n)$
 - \Box $s_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}s_1)$

•
$$\Box$$
 $s_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}s_2)$

•
$$\Box$$
 $s_4 = f(t_n + h, y_n + hs_3)$

•
$$\Box \quad y_{n+1} = y_n + \frac{h}{6}(s_1 + 2s_2 + 2s_3 + s_4)$$

- \Box This is $O(\Delta t^4)$
- \Box If the function f(t,y) does not depend upon y, then $s_2 = s_3$, and

•
$$\Box \quad y_{n+1} = y_n + \frac{h}{6}(s_1 + 4s_2 + s_4)$$

- Simpson's rule!
- How do people come up with these things?
 - parameters: $\alpha_i, \beta_{i,i}$, and γ_i .
 - \Box There are k stages. Each stage computes a slope s_i by evaluating f(t,y) for a particular set of values of t and y, obtained by a linear combination of the previous slopes:

•
$$\Box$$
 $s_i = f\left(t_n + \alpha_i h, y_n + h \sum_{j=1}^{i-1} (\beta_{i,j} s_j)\right)$

• \Box These slopes are then combined to produce our estimate for y_{n+1}

•
$$\Box$$
 $y_{n+1} = y_n + h \sum_{i=1}^k \gamma_i s_i$

• For k=2, we have already seen two-stage single-step methods:

•
$$\Box$$
 $s_1 = f(t_n, y_n) \rightarrow \alpha_1 = 0$

- \Box $s_2 = f(t_n + \alpha_2 h, y_n + h\beta_{2,1}s_1))$
 - \bullet $_{\Box}$ Note that if $~\beta$ has diagonal elements, then we have an implicit method (there exists an *i* for which s_i is equal to a linear

combination which includes itself..)

- \Box $y_{n+1} = y_n + h(\gamma_1 s_1 + \gamma_2 s_2)$
- \Box Upon Taylor expanding s_2 around t_n, y_n , we have

•
$$\Box$$
 $s_2 = f(t_n, y_n) + \frac{\partial f}{\partial t} \alpha h + \frac{\partial f}{\partial y} \beta s_1 h + O(h^2)$

• 🗆 so

$$y_{n+1} = y_n + h(\gamma_1 + \gamma_2) f(t_n, y_n) + \gamma_2 \left[\alpha \frac{\partial f}{\partial t} + \beta \frac{\partial f}{\partial y} f(t_n, y_n) \right] h^2 + O(h^3)$$

• \Box The Taylor expansion of $y(t_n+h)$ at t_n is:

Sections

AM111 Lectures

• \Box The Taylor expansion of $y(t_n + h)$ at t_n is:

•
$$\square$$
 $y(t_n+h) = y(t_n) + hf(t_n, y(t_n)) + \frac{h^2}{2}\frac{\partial f}{\partial t} + \frac{h^2}{2}\frac{\partial f}{\partial y}f(t_n, y(t_n)) + O(h^3)$

- \Box Comparing these, letting $y_n = y(t_n)$, we find that we must have
- \Box $\gamma_1 + \gamma_2 = 1$
- \square $\gamma_2 \alpha = 1/2$
- \square $\gamma_2\beta = 1/2$
- Thus the method has almost been determined. We are free to choose one of the parameters however we like.
- $\bullet\ \square$ If we choose $\ \gamma_1=0,$ then $\ \gamma_2=1, \alpha=\beta=1/2$
 - \Box $s_1 = f(t_n, y_n)$
 - \Box $s_2 = f(t_n + h/2, y_n + hs_1/2)$
 - \Box $y_{n+1} = y_n + s_2 h$
 - This is the 2nd Order Runge-Kutta method.
- \Box If we choose $\gamma_1 = 1/2$, then $\gamma_2 = 1/2, \alpha = \beta = 1$.
 - \Box $s_1 = f(t_n, y_n)$
 - \Box $s_2 = f(t_n + h, y_n + hs_1)$
 - \square $y_{n+1} = y_n + \frac{s_1 + s_2}{2}h$
 - This is Heun's method.
- •
- For arbitrary Multi-stage single-step methods:
 - \square # of calculations per step: 2, 3, 4, $5 \le n \le 7$, $8 \le n \le 9$, n > 10
 - Best possible error:

$$O(h^2), O(h^3), O(h^4), O(h^{n-1}), O(h^{n-2}) O(h^{n-3})$$

- Error control (adaptive stepsize)
 - \square Basic idea: If we know the error is $_{\propto}h^n$, and we know how big this error is for a particular h, then we can find a new h^* for which the error is smaller

than a specified tolerance.

- How do we estimate the error? If we have access to the exact solution, it's pretty easy, but generally this option isn't available. Another way to go is to use a higher-order method in place of the exact solution to estimate the error of the lower-order method.
- 🗆 If we have 2 methods:

•
$$\square$$
 $\tilde{e} = y(t_{i+1}) - \tilde{y}_{i+1}$ $O(h^{n+2})$

- $\Box e = y(t_{i+1}) y_{i+1} \quad O(h^{n+1})$
- \Box $e = \tilde{e} + \tilde{y}_{i+1} y_{i+1} \simeq \tilde{y}_{i+1} y_{i+1}$ since $\tilde{e} \ll e$
- $\square e \sim O(h^{n+1}).$
- \Box Given an error tolerance ε , we want to change the step size from $h \rightarrow qh$

so that the new error
$$|q^n e| < \varepsilon$$
. Thus making $q < \left| \frac{1}{\tilde{y}_{i+1} - y_{i+1}} \right|^{1/n}$.

• 🗆

- 🛛 Week 11
- 🗆 Week 12
- U Week 13

Sections

Apr. 7th

LectureNotes

AM111 Lectures

- 🗆 Week 13
- 🗆 Week 14

9

Office Hours