10.2 Logistic Map: Numerics

In a fascinating and influential review article, Robert May (1976) emphasized that
even simple nonlinear maps could have very complicated dynamics. The article
ends memorably with “an evangelical plea for the introduction of these difference
equations into elementary mathematics courses, so that students’ intuition may be
enriched by seeing the wild things that simple nonlinear equations can do.”

May illustrated his point with the logistic map

'xn+| = r‘xn(l - xn)’ (1)

a discrete-time analog of the logistic equation for population growth (Section 2.3).
Here x, 20 is a dimensionless measure of the population in the nth generation
and r 2 0 is the intrinsic growth rate. As shown in Figure 10.2.1, the graph of (1) is
a parabola with a maximum value of /4 at x = 4. We restrict the control parame-
ter r to the range 0 < r <4 so that (1) maps the interval 0 < x <1 into itself. (The
behavior is much less interesting for other values of x and r—see Exercise
10.2.1.)
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S X, Suppose we fix r, choose some initial population x,, and then use (1) to gener-

ate the subsequent x, . What happens?

For small growth rate r <1, the population always goes extinct: x, — 0 as
n — oo . This gloomy result can be proven by cobwebbing (Exercise 10.2.2).

For 1<r<3 the population grows and eventually reaches a nonzero steady
state (Figure 10.2.2). The results are plotted here as a time series of x, vs. n.
To make the sequence clearer, we have connected the discrete points (n,x,) by
line segments, but remember that only the corners of the jagged curves are

 damped oscilla-
st, at stable fixed

10.2 LOGISTIC MAP: NUMERICS




Further
creases. Sp
Then comp

Figure 10.2,2

For larger r, say r=3.3, the population builds up again but now oscillates
about the former steady state, alternating between a large population in one gener-
ation and a smaller population in the next (Figure 10.2.3). This type of oscillation,
in which x, repeats every two iterations, is called a period-2 cycle.
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At still larger r, say r =3.5, the population approac.hes a cycle that now repeats ‘

every four generations; the previous cycle has doubledtits period to period-4 (Fig-
ure 10.2.4).
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Figure 10.2.4
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Further period-doublings to cycles of period 8, 16, 32, ..., occur as r in-
creases. Specifically, let 1, denote the value of where a 2"-cycle first appears.
Then computer €Xperiments reveal that

n=3 (period 2 is born)
r, =3.449,., 4

7, =3.54409... 8

T, =3.5644... 16

r; =3.568759...

T, =3.569946...

We’ll have a lot more to say about this number in Section 10.6.

Chaos and Periodic Windows

According to Glejck (1987, p. 69), May wrote the logistic map on a corridor
blackboard as a problem for his graduate students and asked, “What the Christ
happens for r> 17" The answer turns out to be complicated: For many values of
r, the sequence {xn} never settles down to a fixed point or a periodic orbjt—
instead the long-term behavior is aperiodic, as in Figure 10.2.5. This is a discrete-
time version of the chaos we encountered earlier in our study of the Lorenz
equations (Chapter 9).

r=39

Figure 10.2.5

The corresponding cobweb diagram is impressively complex (Figure 10.2.6).
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Figure 10.2.6

You might guess that the system would become more and more chaotic as r
increases, but in fact the dynamics are more subtle than that. To see the long-
term behavior for all values of r at once, we plot the orbit diagram, a magnifi-
cent picture that has become an icon of nonlinear dynamics (Figure 10.2.7).
Figure 10.2.7 plots the system’s attractor as a function of r. To generate the
orbit diagram for yourself, you’ll need to write a computer program with
two “loops.” First, choose a value of r. Then generate an orbit starting
from some random initial condition x,. Iterate for 300 cycles or so, to allow
the system to settle down to its eventual behavior. Qnce the transients have
decayed, plot many points, say X, , ..., Xe above that r. Then move to
an adjacent value of r and repeat, eventually sweeping across the whole pic-
ture. '

Figure 10.2.7 shows the most interesting part of the diagram, in the region
3.4<r<4. At r=3.4, the attractor is a period-2 cycle, as indicated by the two

branches. As r increases, both branches split simultaneously, yielding a period-4

cycle. This splitting is the period-doubling bifurcation mentioned earlier. A cas
cade of further period-doublings occurs as r increases, yielding period-8, period
16, and so on, until at r = r, =3.57, the map becomes chaotic and the attractot
changes from a finite to an infinite set of points.

For r > r,, the orbit diagram reveals an unexpected mixture of order and chao
with periodic windows interspersed between chaotic clouds of dots. The large wi
dow beginning near r = 3.83 contains a stable period-3 cycle. A blow-up of part:
the period-3 window is shown in the lower panel of Figure 10.2.7. Fantasticall
copy of the orbit diagram reappears in miniature!
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Figure 10.2.7 Campbell (1979), p. 35, courtesy of Roger Eckhardt

10.3 Logistic Map: Analysis

The numerical results of the last section raise many tantalizing questions. Let’s try
to answer a few of the more straightforward ones.

EXAMPLE 10.3.1:

Consider the logistic map Xoar = 1%, (1=x,) for 0< x, <1 and 0 <r<4. Find
all the fixed points and determine their stability.

Solution: The fixed points satisfy x* = f(x*) = rx*(1—x*). Hence x*=0 or
I=r(1-x%), ie., x*=1 —+. The origin is a fixed point for all r, whereas
x*=1-4 isin the range of allowable x only if r>1 . ’

Stability depends on the multiplier f/(x*)=r—2rx * Since J’(0)=r, the ori-
gin is stable for r<1 and unstable for r>1. At the other fixed point,
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of x,. Similarly, its second digit is anything other than the second digit of x,.In
general, the nth digit of r is X, defined as any digit other than X, - Then we claim
that the number = X}, X5, %35 +++ is not on the list. Why not? It can’t be equal to X,
because it differs from X, in the first decimal Place. Similarly, r differs from X, in
the second decima] place, from X, in the third decimal place, and so on. Hence r is
not on the list, and thyg X is uhcountable. |

This argument (devised by Cantor) is called the diagonal argument, because r
is constructed by changing the diagonal entries X,, in the matrix of digits [xUJ

11.2 Cantor Set

!

Cantor Set C

Figure 11.2.1

We start with the closed interval §, = [0,1] and remove its open middle third, i.e.,
we delete the interval (4.%) and leave the endpoints behind. This produces the pair

Wn as S, . Then we remove the open middle thirds of shoge
two intervals to produce S,’, and so on. The limiting set C = S.. is the Cantor set. It
is difficult to visualize, but Figure 11.2.1 Suggests that it consists of an infinite

number of infinitesimal pieces, separated by gaps of various sizes,

Fractal Properties of the Cantor Set

The Cantor set C has several properties that are typical of fractals more generally:
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1.-C has structure at arbitrarily small scales. If we enlarge part of C re-
peatedly, we continue to see a complex pattern of points separated by
gaps of various sizes. This structure is neverending, like worlds within
worlds. In contrast, when we look at a smooth curve or surface under re-
peated magnification, the picture becomes more and more featureless.

. C is self-similar. It contains smaller copies of itself at all scales. For in-
stance, if we take the left part of C (the part contained in the interval
[0, _%]) and enlarge it by a factor of three, we get C back again. Simi- ‘ Sh

larly, the parts of C in each of the four intervals of S, are geometrically their|
So

unles:
schoo

EXA

similar to C, except scaled down by a factor of nine.

If you’re having trouble seeing the self-similarity, it may help to
think about the sets S, rather than the mind-boggling set S_. Focus on
the left half of S,—it looks just like S,, except three times smaller. Fir
Similarly, the left half of S; is S,, reduced by a factor of three. In gen-
eral, the left half of S, ,, looks like all of S, , scaled down by three. Now
set n=oo. The conclusion is that the left half of S_ looks like S_, . base-:
scaled down by three, just as we claimed earlier.

Warning: The strict self-similarity of the Cantor set is found only in
the simplest fractals. More general fractals are only approximately self-
similar.

expan

interp

. The dimension of C is not an integer. As we’ll show in Section 11.3, its
dimension is actually In2/In3 = 0.63! The idea of a noninteger dimen-
sion is bewildering at first, but it turns out to be a natural generalization
of our intuitive ideas about dimensiqn, and provides a very useful tool for
quantifying the structure of fractals.\

Two other properties of the Cantor set are worth noting, although they are not
fractal properties as such: C has measure zero and it consists of uncountably many
points. These properties are clarified in the examples below.

EXAMPLE 11.2.1:

Show that the measure of the Cantor set is zero, in the sense that it can be ¢
ered by intervals whose total length is arbitrarily small.

Solution: Figure 11.2.1 shows that each set S, completely covers all the s
that come after it in the construction. Hence the Cantor set C = S_ is covere
each of the sets S, . So the total length of the Cantor set must be less than the
length of S, , for any n. Let L, denote the length of S,. Then from Figure |
we see that Ly =1, L, =%, L, =(%)(3)=(2)’, and in general, L, = (2)".

L, — 0 as n— oo, the Cantor set has a total length of zero. s

FRACTALS




whose base-3 expansion contains no 1°s, as claimed. m

There’s still a fussy point to be addressed. What about endpoints like
+=.1000...? It’s in the Cantor set, yet it has a | in its base-3 expansion. Does
this contradict what we said above? No, because this point can also be written
solely in terms of 0’s and 2’s, as follows: 4 =.1000. ..=.02222. ... By this trick,
each point in the Cantor set can be written such that no 1’s appear in its base-3 ex-
pansion, as claimed.
Now for the payoff.

EXAMPLE 11.2.3:

Show that the Cantor set is uncountable.

Solution: This is just a rewrite of the Cantor diagonal argument of Example

11.1.4, so we’ll be brief. Suppose there were a list {cl,cz,c3, .. } of all points in

C . To show that C is uncountable, we produce a point ¢ that is in C but not on
the list. Let ¢; denote the jth digit in the base-3 expansion of c,. Define
€ =€) €y .., Where the overbar means we switch 0’s and 2’s: thus ¢, =0 if
¢.,=2and ¢, =2 ifc, =0.Then C isin C, since it’s written solely with 0’s
and 2’s, but ¢ is not on the list, since it differs from c, in the nth digit. This con-
tradicts the original assumption that the list is complete. Hence C is uncount-
able. m

11.3 Dimension of Self-Similar Fractals

What is the “dimension” of a set of points? For familiar geometric objects, théa an-
swer is clear—lines and smooth curves are one*dimensional, planes and smooth
surfaces are two-dimensional, solids are three-dimensional, and so on. If forced to
give a definition, we could say that the dimension is the minimum number of coor-
dinates needed to describe every point in the set. For instance, a smooth curve is
one-dimensional because every point on it is determined by one number, the arc
length from some fixed reference point on the curve. .
But when we try to apply this definition to fractals, we quickly run into par
doxes. Consider the von Koch curve, defined recursively in Figure 11.3.1.
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To see this, observe that if the length

of S, is L, then the length of S, is L=4L,
because S, contajns four segments, each of length £ I . The length increases by a
factor of 4 ateach stage of the construction, so L=(%) Ly—eoasn— oo,
Moreover

, the arc length between ay
reasoning. Hence points on K aren’t de
ular point, becayse every point is infinit
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EXAMPLE 11.4.1:

11.4 Box Dimension

To deal with fractals that are not self-similar, we need to generalize our notion of
dimension still further. Various definitions have been proposed; see Falconer
(1990) for a lucid discussion. All the definitions share the idea of “measurement at
ascale € "—roughly speaking, we measure the set in a way that ignores irregulari-
ties of size less than ¢, and then study how the measurements vary as € — 0.

Definition of Box Dimension

One kind of measurement involves covering the set with boxes of size & (Fig-
ure 11.4.1).

L A
N(e)ocz— N(e)==3

Figure 11.4.1

Let S be a subset of D-dimensional Euclidean space, and let N(e) be the mini-
mum number of D-dimensional cubes of side € needed to cover S. How does N(g)

depend on £? To get some intuition, consider the classical sets shown in Figure

11.4.1. For a smooth curve of length L, N(¢g) o< L/e; for a planar region of area A

bounded by a smooth curve, N(e) = A/e?. The key observation is that the dimen-
sion of the set equals the exponent d in the power law N(g) < 1/e! -

This power law also holds for most fractal sets S, except that d is no longer an

integer. By analogy with the classical case, we interpret d as a dimension, usually
called the capacity or box dimension of S. An equivalent definition is

d=lim w , If the limit exists.
£0 ]ﬂ(l/E)

Find the box dimension of the Cantor set,

Solution: Recall that the Cantor set is covered by each of the sets S, used in its

construction (Figure 11.2.1). Each S, consists of 2" intervals of length (1/3)", so if
we pick € =(1/3)", we need all 2" of these intervals to cover the Cantor set. Hence
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This solution illustrates a helpful trick. We used a discrete sequence € = ( 1/3)" that
tends to zero as n — oo, even though the definition of box dimension says that we
should let £ — O continuously. If & # (1/3)", the covering will be slightly wasteful—
some boxes hang over the edge of the set—but the limiting value of d is the same.
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A fractal that is not self-similar is constructed as follows. A square region is di- that settles d
vided into nine equal squares, and then one of the small squares is selected at ran- typically hav
dom and discarded. Then the process is repeated on each of the eight remaining timate the fr:
small squares, and so on. What is the box dimension of the limiting set? First we g

Solution: Figure 11.4.2 shows the first two stages in a typical realization of this letting the sy
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Pick the unit of length to equal the side of the original square. Then S, is covered
(with no wastage) by N =8 squares of side &= 4. Similarly, S, is covered by
N =87 squares of side & = (4)% In general, N = 8" when ¢ = (4)". Hence

m In N(¢) 1n(8") nin8 In8
T e0 In(1/€) ln(3") nln3 In3’

Critique of Box Dimension

When computing the box dimension, it is not always easy to find a minim

cover. There’s an equivalent way to compute the box dimension that avoids th
problem. We cover the set with a square mesh of boxes of side &, count the num
of occupied boxes N(g), and then compute d as before. ‘
Even with this improvement, the box dimension is rarely used in practice.
computation requires too much storage space and computer time, compared to 0

11.5.1
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