Homework \#7
APM111: Introduction to Numerical Methods
Due: April 18, 2006

1. For the test problem $\frac{d y}{d t}=\lambda y$, where λ is a complex number, calculate and plot the stability region of the trapezoidal method

$$
y_{n+1}=y_{n}+\frac{\Delta t}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right]
$$

and the Heun's method

$$
y_{n+1}=y_{n}+\frac{\Delta t}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n}+f\left(t_{n}, y_{n}\right) \Delta t\right)\right]
$$

The stability region is the region in the complex plane of $z=\lambda \Delta t$ where y_{n} does not go to infinity as t goes to infinity. Identify which method is an implicit method and which method is an explicit method. Does the implicit method have a bigger or smaller stability region compared to its explicit counterpart?
2. Show algebraically that the Heun's method is $2^{\text {nd }}$ order accurate, i.e. the local discretization error is $\mathrm{O}\left(\Delta t^{3}\right)$, where Δt is the time step. Note that since f depends on both t and y , you need to use Taylor expansion in two-dimensions. The trapezoidal method can be shown similarly to be $2^{\text {nd }}$ order accurate as well, but we will not bore you with a second derivation.
3. Implement the trapezoidal method and the Heun's method and use them to solve the test problem (see problem 1) with $\lambda=2 i, i=\sqrt{-1}$ and $\mathrm{y}\left(\mathrm{t}=\mathrm{t}_{0}\right)=1$. Repeat your experiments with different time steps to check your results from problems 1 and 2 experimentally. To check your results from problem 1 , try $\Delta t=0.5,0.2$, and 0.1 , and integrate over the time interval $[0,50]$. To show the methods are $2^{\text {nd }}$ order accurate, use $\Delta t=0.1 / 2^{k}, k=0,1,2, \ldots 9$ and integrate over the time interval [0,3]. Find your global errors by comparing your numerical results with the exact solution at the end of the simulation (i.e. $\mathrm{t}=3$). Plot the results as $\log -\log$ plots. With the small time steps, the runs may take a few minutes.
4. Solve the single pendulum problem

$$
\begin{aligned}
& \ddot{\theta}=-\sin \theta \\
& \theta(t=0)=\theta_{0} \\
& \dot{\theta}(t=0)=0
\end{aligned}
$$

for the time interval $[0,20 \pi]$ with your favorite Matlab ODE solver for non-stiff problems. Do it for $\theta_{0}=0.1, \pi-0.1$, and π, and plot your results. For the last case, does the numerical solution match the exact solution? And why?

