
Applied Mathematics 105b:
Ordinary and Partial Differential Equations

Eli Tziperman
Vector calculus syllabus – long version, will not be covered in class, students expected to have

seen this in APM21a,b

1. VECTOR CALCULUS AND TENSORS. downloads

(a) Motivation: bees do it? yes, bees are using vector calculus.

(b) Introduction and review: A quick reminder

i. Scalars, vectors, vector addition, scalar multiplication between a vector and a
scalar (Gr§9.2, pp 412-414)

ii. Two and three dimensional scalar fields (temperature) and vector fields (wind,
heat flux).

iii. Dot and cross products (Gr§14.2, pp 683-686)
iv. Cartesian coordinates (Gr§14.3 to end of example 1, pp 687-690)

(c) Einstein index notation and friends:

i. Sum over repeated indices
ii. Kronecker delta tensor (Gr p 427, eqn 22)

iii. Levi-Civita tensor/ permutation symbol, cross produces, relation to Kronecker
delta, to determinants, misc identities notes.

(d) Vector calculus: div ∇ ·~a, grad ∇φ, curl ∇×~a.

i. Divergence: definition using a general closed-surface integral over a vector field
at the limit of the surface becoming infinitesimal. Derivation for a cube-like
surface, and the differential operator. (Gr§16.3, pp 761-765, including example
1).

ii. Gradient: definition, input and output of div, grad, curl; directional derivative
(Gr§16.4, pp 766-769 until but not including example 3).

iii. Providing physical intuition for divergence: mass conservation for an
incompressible fluid: ∇ ·u = 0 (Gr p 797-799, example 2).

iv. Providing physical intuition for grad and div: temperature field T (x,y,x),
diffusive heat flux vector field k∇T = k(Tx,Ty,Tz), diffusive local heating rate
given by Laplacian, div(grad(T )) = ∇2T = Txx +Tyy +Tzz (derive this).
vector calculus preliminaries.m;

v. Curl: definition as a cross product between ∇ and a vector field; physical
interpretation via the vorticity of a flow field (Gr§16.5 p 774-775 to equation 4;
for vorticity interpretation, use section 1 of notes-curl-and-vorticity.pdf).

vi. Some vector identities (Gr§16.6, pp 778-780, until just before example 1; prove
equations 4, 12, 13).
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vii. Application of curl: Ekman transport, coastal upwelling and fisheries
notes-curl-and-coastal-upwelling.pdf).

(e) Integral theorems: divergence, Stokes, Green’s, potential of a vector field

i. Divergence (Gauss) theorem: theorem 16.8.1
∫

V ∇ ·~vdV =
∫

S n̂ ·~vdA,
A. Proof for a rectangle domain, outline of a proof for general domain,

relationship with fundamental theorem of integral calculus (Gr§16.8, pp
792-end of first paragraph on p 795).

B. Physical interpretation in terms of heat fluxes over the surface and integral
over the local heating rate (example 3, p 799 - equation 40, p 801).

C. 2d version (which will be needed for proving Stokes theorem below):∫
A ∇ ·~vdV =

∫
C n̂ ·~vds (equation 47, example 5, p 803).

ii. Stokes theorem:
∫

S n̂ ·∇×~vdA =
∮

C~v · d~R.
A. Line integrals, interpretation as the work done by a force vector over a path

(definition of line integral from Gr§16.9.1, eqns 2,3,4, p 810-811; for
interpretation, start with constant force case, example 2 and Figs 177-178 in
Kr p 373; proceed to variable force case Kr second half of p 423).

B. Example: circulation and aerodynamic lift of a wing, connection to Bernoulli
law (eqns 15,16, to end of §16.9.1 on p 814, including Fig. 3), class demo of
Bernoulli law.

C. Theorem 16.9.1 and proof for a flat (2d) surface (Gr§16.9.2, pp 814-815).
D. Geometric intuition (only qualitative): notes-stokes-theorem-intuition.pdf
E. Application 1: potential theory. • Consider first work done by friction as an

example of path-dependent work. When is the work performed by a vector
force path-independent? • Introduce vector fields that are gradients of a
scalar field (Kr p 407, the single paragraph above theorem 3). • Three
equivalent conditions for line integrals over a vector field to be
path-independent: (1) the force may be expressed in terms of a potential,
~F = ∇ f where f (x,y,x) is a scalar function; (2) curl~F = ∇×~F = 0; or (3)
line integrals over a closed path vanish. Note that 2 and 3 are equivalent by
Stokes theorem! (Kr§10.2, from p 426 to the top paragraph on p 429).

F. Application 2: fluid flow around a cylinder - only derivation of Laplace
equation for the potential and for the stream function (notes, the solution is
given below in the PDEs section).

iii. Green’s theorem:
∫

S

(
∂Q
∂x − ∂P

∂Y

)
dA =

∮
C Pdx+Qdy

A. This is simply a private case of stokes theorem, Gr§16.9.3 pp 818-819, Fig 9.
B. Application: calculating the area of an ellipse (Kr§10.4, p 442, example 2);
C. Application: area of a cardioid, (Kr§10.4, p 443, example 3). Animation

demonstrating the construction of a cardioid from wikipedia.
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D. Infinite number of cardioids in the Mandelbrot set: fractal zoom animation
from youtube.

(f) Vector calculus in orthogonal curvilinear coordinates

i. Non-Cartesian coordinates
A. Plane polar coordinates, base vectors and expressions for derivatives of the

base vectors. (First derivation: Gr§14.6.1 p 700-702, eqns
4a,4b,5,10,11,15,16,18a,b; second derivation: eqns 19a,b to end of page 703).

B. Cylindrical coordinates (first paragraph of Gr§14.6.2, p 704 and Fig 5 there)
C. Spherical coordinates (Gr§14.6.3, p 705-706, to end of eqns 28).

ii. ∇ in non Cartesian coordinates
A. Cylindrical coordinates (Gr§16.7.1 p 783 to end of p 785)
B. Example: curl of solid body rotation in cylindrical coordinates (section 2 of

notes curl and vorticity.pdf).
C. Spherical coordinates (Gr§16.7.2 eqns 27-33), derivations in HW and

sections.
D. General curvilinear coordinates (time permitting, Gr§16.7.3, p 789-790)
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