Physical interpretation of curl via the vorticity of fluid
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1 Using Cartesian coordinates

Consider a “solid body rotation” flow. E.g., a rotating filled bucket, with the water rotating with the
bucket. Suppose the angular velocity is ®, this means that the velocity is cylindrical coordinates is
v=(v,,ve,v;) = (0,7®,0). In Cartesian coordinates this is v = (vy, vy, v,,) = (x®0, —y®,0). (Easiest
way to verify this is to consider the angular velocity of a fluid parcel that is on the y axis, and
another one that is on the x axis). The curls of this velocity field is
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So the curl of the velocity field is twice the rate of rotation. We therefore conclude that the curl
represents the rotation motion of the vector field.

2 Using cylindrical coordinates

In these coordinates,
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and the curl of a vector is given by
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for the solid body rotation flow above, the only term that does not vanish identically is
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