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1 Using Cartesian coordinates
Consider a “solid body rotation” flow. E.g., a rotating filled bucket, with the water rotating with the
bucket. Suppose the angular velocity is ω, this means that the velocity is cylindrical coordinates is
v = (vr,vθ,vz) = (0,rω,0). In Cartesian coordinates this is v = (vx,vy,vw) = (xω,−yω,0). (Easiest
way to verify this is to consider the angular velocity of a fluid parcel that is on the y axis, and
another one that is on the x axis). The curls of this velocity field is
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So the curl of the velocity field is twice the rate of rotation. We therefore conclude that the curl
represents the rotation motion of the vector field.

2 Using cylindrical coordinates
In these coordinates,
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and the curl of a vector is given by
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for the solid body rotation flow above, the only term that does not vanish identically is
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